【题目】如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根,且其中一个根为另一个根的2倍,那么称这样的方程为“倍根方程”.例如,一元二次方程x2﹣6x+8=0的两个根是x1=2和x2=4,则方程x2﹣6x+8=0是“倍根方程”.
(1)根据上述定义,一元二次方程2x2+x﹣1=0 (填“是”或“不是”)“倍根方程”.
(2)若一元二次方程x2﹣3x+c=0是“倍根方程”,则c= .
(3)若关于x的一元二次方程ax2+bx+c=0(a≠0)是“倍根方程”,则a、b、c之间的关系为 .
(4)若(x﹣2)(mx﹣n)=0(m≠0)是“倍根方程”,求代数式4m2﹣5mn+n2的值.
【答案】(1)不是 ;(2)2;(3)2b2=9ac;(4)0.
【解析】
(1)根据“倍根方程”的定义即可得出结论;
(2)根据倍根方程的定义以及根与系数的关系即可求出答案;
(3)设x=m与x=2m是方程ax2+bx+c=0的解,然后根据根与系数的关系即可求出答案;
(4)根据定义可求出n=4m或n=m,代入原式后即可求出答案.
解:(1)2x2+x﹣1=0,
(2x﹣1)(x+1)=0,
解得x1=和x2=﹣1,
故一元二次方程2x2+x﹣1=0 不是(填“是”或“不是”)“倍根方程”;
(2)由题意可知:x=m与x=2m是方程x2﹣3x+c=0的解,
∴2m+m=3,2m2=c,
∴m=1,c=2;
(3)设x=m与x=2m是方程ax2+bx+c=0的解,
∴2m+m=,2m2=,
∴消去m得:2b2=9ac;
(4)由(x﹣2)(mx﹣n)=0(m≠0)是“倍根方程”,
且该方程的两根分别为x=2和x=,
∴=4或=1,即n=4m或n=m,
当n=4m时,
原式=(m﹣n)(4m﹣n)=0
当n=m时,
原式=(m﹣n)(4m﹣n)=0.
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=8,AD=6,点E为AB上一点,AE=2,点F在AD上,将△AEF沿EF折叠,当折叠后点A的对应点A′恰好落在BC的垂直平分线上时,折痕EF的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个口袋里装着白、红、黑三种颜色的小球(除颜色外形状大小完全相同),其中白球3个、红球2个、黑球1个.
(1)随机从袋中取出一个球,求取出的球是黑球的概率;
(2)若取出的第一只球是红球,不将它放回袋里,从袋中余下的球中再随机地取出1个,这时取出的球是黑球的概率是多少?
(3)若取出一个球,将它放回袋中,从袋中再随机地取出一个球,两次取出的球都是白球的概率是多少?(用列表法或树状图计算)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于x的一元二次方程(m-1)x2-x-2=0,
(1)若x=-1是方程的一个根,求m的值及另一个根;
(2)当m为何值时方程有两个不同的实数根.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,对角线AC与BD相交于点O,在DC的延长线上取一点E,连接OE交BC于点F.已知AB=4,BC=6,CE=2,则CF的长等于( )
A. 1 B. 1.5 C. 2 D. 3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,反比例函数y=(k>0)的图像与矩形AOBC的边AC,BC分别交于点E、F,点C的坐标为(8,6),将△CEF沿EF翻折,C点恰好落在OB上的点D处,则k的值为( )
A.B.6C.12D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校社会实践小组为了测量大雁塔的高度,在地面上C处垂直于地面竖立了高度为2米的标杆CD,此时地面上的点E,标杆的顶端点D,大雁塔的塔尖点B正好在同一直线上,侧得EC=4米,将标杆CD向后移到点G处,此时地面上的点F,标杆的顶端点H,大雁塔的塔尖点B正好在同一直线上(点F,点G,点E,点C与塔底处的点A在同一直线上),这时测得FG=6米,GC=53米,请你根据以上数据,计算大雁塔的高度AB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】城市中“打车难”一直是人们关注的一个社会热点问题.近几年来,“互联网+”战略与传统出租车行业深度融合,“优步”、“滴滴出行”等打车软件就是其中典型的应用,名为“数据包络分析”(简称DEA)的一种效率评价方法,可以很好地优化出租车资源配置,为了解出租车资源的“供需匹配”,北京、上海等城市对每天24个时段的DEA值进行调查,调查发现,DEA值越大,说明匹配度越好.在某一段时间内,北京的DEA值y与时刻t的关系近似满足函数关系(a,b,c是常数,且≠0),如图记录了3个时刻的数据,根据函数模型和所给数据,当“供需匹配”程度最好时,最接近的时刻t是( )
A. 4.8 B. 5 C. 5.2 D. 5.5
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com