【题目】如图1,若抛物线L1的顶点A在抛物线L2上,抛物线L2的顶点B也在抛物线L1上(点A与点B不重合),我们定义:这样的两条抛物L1,L2互为“友好”抛物线,可见一条抛物线的“友好”抛物线可以有多条.
(1)如图2,已知抛物线L3:y=2x2-8x+4与y轴交于点C,试求出点C关于该抛物线对称轴对称的点D的坐标;
(2)请求出以点D为顶点的L3的友好抛物线L4的解析式,并指出L3与L4中y同时随x增大而增大的自变量的取值范围;
(3)若抛物y=a1 (x-m) 2+n的任意一条友好抛物线的解析式为y=a2 (x-h) 2+k,请写出a1与a2的关系式,并说明理由.
【答案】(1)点D坐标(4,4);(2)L4的解析式y=-2(x-4) 2+4,当2≤x≤4时,抛物线L3与L4中y同时随x增大而增大;(3)a1与a2的关系式为a1+a2=0或a1=-a2,理由见解析.
【解析】试题分析:(1)设x=0,求出y的值,即可得到C的坐标,把抛物线L3:y=2x2-8x+4配方即可得到抛物线的对称轴,由此可求出点C关于该抛物线对称轴对称的对称点D的坐标;
(2)由(1)可知点D的坐标为(4,4),再由条件以点D为顶点的L3的“友好”抛物线L4的解析式,可求出L4的解析式,进而可求出L3与L4中y同时随x增大而增大的自变量的取值范围;
(3)根据:抛物线L1的顶点A在抛物线L2上,抛物线L2的顶点B也在抛物线L1上,可以列出两个方程,相加可得(a1+a2)(h-m)2=0.可得a1=-a2.
试题解析:(1)∵抛物线L3:y=2x28x+4,
∴y=2(x2)24,
∴顶点为(2,4),对称轴为x=2,
设x=0,则y=4,
∴C(0,4),
∴点C关于该抛物线对称轴对称的对称点D的坐标为:(4,4);
(2)∵以点D(4,4)为顶点的L3的友好抛物线L4还过点(2,4),
L4的解析式y=-2(x-4) 2+4,
由图象可知,当2≤x≤4时,抛物线L3与L4中y同时随x增大而增大;
(3)a1与a2的关系式为a1+a2=0或a1=-a2.
理由如下:
∵抛物线y=a1 (x-m) 2+n的一条“友好”抛物线的解析式为y=a2 (x-h) 2+k,
∴y=a2 (x-h) 2+k过点(m,n),且y=a1 (x-m) 2+n过点(h,k),
即
由①+②得(a1+a2) (h-m) 2=0.
又“友好”抛物线的顶点不重合,
∴h≠m,
∴a1+a2=0或a1=-a2.
科目:初中数学 来源: 题型:
【题目】如图1,长方形ABCD中,AB=CD=7cm,AD=BC=5cm,∠A=∠B=∠C=∠D=90°,点E在线段AB上以lcms的速度由点A向点B运动,与此同时点F在线段BC上由点B向点C运动,设运动的时间均为ts.
(1)若点F的运动速度与点E的运动速度相等,当t=2时:
①判断△BEF与△ADE是否全等?并说明理由;
②求∠EDF的度数.
(2)如图2,将图1中的“长方形ABCD”改为“梯形ABCD”,且∠A=∠B=70°,AB=7cm,AD=BC=5cm,其他条件不变.设点F的运动速度为xcm/s.是否存在x的值,使得△BEF与△ADE全等?若存在,直接写出相应的x及t的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】AB⊥BC,∠1+∠2=90°,∠2=∠3.BE与DF平行吗?为什么?
(解析)解:BE∥DF.
∵AB⊥BC,
∴∠ABC= °,
即∠3+∠4= °.
又∵∠1+∠2=90°,
且∠2=∠3,
∴ = .
理由是: .
∴BE∥DF.
理由是: .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2019年11月30日上午符离大道正式开通,同时宿州至徐州的K902路城际公交开通试运营,小明先乘K902路城际公交车到五柳站下车,再步行到五柳景区游玩,从出发地到五柳景区全程31千米,共用了1个小时,已知步行的速度每小时4千米,K902路城际公交的速度是步行速度的10倍,求小明乘公交车所行驶的路程和步行的路程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,∠A=90°,AC=AB=4,D,E分别是边AB,AC的中点,若等腰Rt△ADE绕点A逆时针旋转,得到等腰Rt△AD1E1,设旋转角为α(0<α≤180°),记直线BD1与CE1的交点为P.
(1)如图1,当α=90°时,线段BD1的长等于 ,线段CE1的长等于 ;(直接填写结果)
(2)如图2,当α=135°时,求证:BD1=CE1,且BD1⊥CE1.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校准备开展“阳光体育活动”,决定开展以下体育活动项目:足球、乒乓球、篮球和羽毛球,要求每位学生必须且只能选择一项,为了解选择各种体育活动项目的学生人数,随机抽取了部分学生进行调查,并将通过获得的数据进行整理,绘制出以下两幅不完整的统计图,请根据统计图回答下列问题:
(1)这次活动一共调查了多少名学生?
(2)补全条形统计图;
(3)在扇形统计图中,选择篮球项目的人数所在扇形的圆心角等于多少度?
(4)若该学校有2500人,请你估计该学校选择羽毛球项目的学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将一副三角板中的两块直角三角尺的直角顶点O按如图方式叠放在一起.
(1)如图(1)若∠BOD=35°,则∠AOC= .
如图(2)若∠BOD=35°,则∠AOC= .
(2)猜想∠AOC与∠BOD的数量关系,并结合图(1)说明理由.
(3)三角尺AOB不动,将三角尺COD的OD边与OA边重合,然后绕点O按顺时针或逆时针方向任意转动一个角度,当∠AOD(0°<∠AOD<90°)等于多少度时,这两块三角尺各有一条边互相垂直.(填空)
(3) 当 ⊥ 时,∠AOD = .
当 ⊥ 时,∠AOD = .
当 ⊥ 时,∠AOD = .
当 ⊥ 时,∠AOD = .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了美化环境,学校准备在如图所示的矩形ABCD空地上进行绿化,规划在中间的一块四边形MNQP上种花,其余的四块三角形上铺设草坪,要求AM=AN=CP=CQ,已知BC=24米,AB=40米,设AN=x米,种花的面积为y1平方米,草坪面积y2平方米.
(1)分别求y1和y2与x之间的函数关系式(不要求写出自变量的取值范围);
(2)当AN的长为多少米时,种花的面积为440平方米?
(3)若种花每平方米需200元,铺设草坪每平方米需100元,现设计要求种花的面积不大于440平方米,设学校所需费用W(元),求W与x之间的函数关系式,并求出学校所需费用的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:中,,求证:,下面写出可运用反证法证明这个命题的四个步骤:
①∴,这与三角形内角和为矛盾,②因此假设不成立.∴,③假设在中,,④由,得,即.这四个步骤正确的顺序应是( )
A.③④②①B.③④①②C.①②③④D.④③①②
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com