| A. | 36° | B. | 45° | C. | 60° | D. | 75° |
分析 根据DE=BE,得到∠EBD=∠EDB=α,根据外角的性质得到∠AED=∠EBD+∠EDB=2α,根据等腰三角形的性质得到∠A=∠AED=2α,于是得到∠BDC=∠A+∠ABD=3α,由于∠ABC=∠C=∠BDC=3α,根据三角形的内角和列方程即可得到结论.
解答 解:∵DE=BE,
∴∠EBD=∠EDB,
设∠EBD=∠EDB=α,
∴∠AED=∠EBD+∠EDB=2α,
∵AD=DE,
∴∠A=∠AED=2α,
∴∠BDC=∠A+∠ABD=3α,
∵BD=BC,AB=AB,
∴∠ABC=∠C=∠BDC=3α,
∴3α+3α+2α=180°,
∴α=22.5°,
∴∠A=45°.
故选:B.
点评 本题考查了等腰三角形的性质,三角形的内角和,三角形的外角的性质,熟练掌握各性质定理是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 115° | B. | 120° | C. | 125° | D. | 145° |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com