【题目】如图1,在矩形
中,
,点
从点
出发向点
移动,速度为每秒1个单位长度,点
从点
出发向点
移动,速度为每秒2个单位长度. 两点同时出发,且其中的任何一点到达终点后,另一点的移动同时停止.
![]()
(1)若两点的运动时间为
,当
为何值时,
?
(2)在(1)的情况下,猜想
与
的位置关系并证明你的结论.
(3)①如图2,当
时,其他条件不变,若(2)中的结论仍成立,则
_________.
②当
,
时,其他条件不变,若(2)中的结论仍成立,则
_________(用含
的代数式表示).
【答案】(1)
;(2)
,证明见解析;(3)①
;②![]()
【解析】
(1)根据相似三角形的性质,可得
,进而列出方程,求出t的值.
(2)根据相似三角形的性质,可得
,进而根据等量关系以及矩形的性质,得出
,进而得出结论.
(3)①根据全等三角形的判定,可得出△AMB≌△DNA,再根据全等三角形的性质,即可得出AM=DN,得出方程,求解即可得出答案.
解:(1)∵
,∴
,
∴
,
解得
.
(2)
.
证明:∵
,∴
.
∵
,
∴
,
∴
,即
.
(3)①∵![]()
∴∠ABE+∠BAE=90°
∵![]()
∴![]()
∵AD=AB,∠BAD=∠ADC=90°
∴△AMB≌△DNA
∴AM=DN
∴t=2-2t
∴t=![]()
②∵由①知
,∠BAD=∠ADC=90°
∴![]()
∵![]()
∴
=n
∴![]()
∴t=![]()
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°,给出以下五个结论:①∠EBC=22.5°;②BD=DC;③AE=2EC;④劣弧
是劣弧
的2倍;⑤AE=BC,其中正确的序号是_________.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN最长可利用25m),现在已备足可以砌50m长的墙的材料.
(1)设计一种砌法,使矩形花园的面积为300m2.
(2)当BC为何值时,矩形ABCD的面积有最大值?并求出最大值.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形
中,
,点
在正方形边上沿
运动(含端点),连接
,以
为边,在线段右侧作正方形
,连接
、
.
小颖根据学习函数的经验,在点
运动过程中,对线段
、
、
的长度之间的关系进行了探究.
下面是小颖的探究过程,请补充完整:
(1)对于点
在
、
边上的不同位置,画图、测量,得到了线段
、
、
的长度的几组值,如下表:
位置 | 位置 | 位置 | 位置 | 位置 | 位置 | 位置 | |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
在
、
和
的长度这三个量中,确定 的长度是自变量, 的长度和 的长度都是这个自变量的函数.
(2)在同一平面直角坐标系
中,画出(1)中所确定的函数的图象:
![]()
(3)结合函数图像,解决问题:
当
为等腰三角形时,
的长约为
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】教材呈现:下图是华师版九年级上册数学教材第77页的部分内容.
猜想
如图,在△ABC中,点D、E分别是AB与AC的中点,根据画出的图形,可以猜想:
DE∥BC,且DE=
BC.
![]()
对此,我们可以用演绎推理给出证明
证明在△ABC中,
∵点D、E分别是AB与AC的中点,
∴
请根据教材提示,结合图①,写出完整证明过程,
结论应用:
如图②在四边形ABCD中,AD=BC,点P是对角线BD的中点,M是DC中点,N是AB中点,MN与BD相交于点Q.
![]()
(1)求证:∠PMN=∠PNM;
(2)若AD=BC=4,∠ADB=90°,∠DBC=30°,则PQ= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:点
和
是一次函数
与反比例函数
图象的连个不同交点,点
关于
轴的对称点为
,直线
以及
分别与
轴交于点
和
.
(1)求反比例函数
的表达式;
(2)若
,求
的取值范围.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:我们知道,四边形的一条对角线把这个四边形分成两个三角形,如果这两个三角形相似但不全等,我们就把这条对角线叫做这个四边形的相似对角线,在四边形ABCD中,对角线BD是它的相似对角线,∠ABC=70°,BD平分∠ABC,那么∠ADC=____________度
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:今有甲种袋子中装有黄金9枚(每枚黄金重量相同),乙种袋子中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲种袋子比乙种袋子轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,则可建立方程为( )
A.
B.![]()
C.
D.![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,O为坐标原点,点B在x轴的正半轴上,四边形OACB是平行四边形,点A的横纵坐标之比为3:4,反比例函数y=
(k>0)在第一象限内的图象经过点A,且与BC交于点F.
(1)若OA=10,求反比例函数解析式;
(2)若点F为BC的中点,且△AOF的面积S=12,求OA的长和点C的坐标.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com