【题目】已知,射线分别和直线交于点,射线分别和直线交于点.点在上(点与三点不重合).连接.请你根据题意画出图形并用等式直接写出、、之间的数量关系.
科目:初中数学 来源: 题型:
【题目】如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3
(1)求证:BN=DN;
(2)求△ABC的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)(方法回顾)证明:三角形中位线定理.
已知:如图1,中,D、E分别是AB、AC的中点.
求证:,.
证明:如图1,延长DE到点F,使得,连接CF;
请继续完成证明过程;
(2)(问题解决)
如图2,在矩形ABCD中,E为AD的中点,G、F分别为AB、CD边上的点,若,,,求GF的长.
(3)(思维拓展)
如图3,在梯形ABCD中,,,,E为AD的中点,G、F分别为AB、CD边上的点,若,,,求GF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一个长方形运动场被分隔成A,B,A,B,C共5个区,A区是边长为a m的正方形,C区是边长为c m的正方形.
(1)列式表示每个B区长方形场地的周长,并将式子化简;
(2)列式表示整个长方形运动场的周长,并将式子化简;
(3)如果a=40,c=10,求整个长方形运动场的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知一条直线过点,且与抛物线交于两点,其中点的横坐标是.
⑴求这条直线的函数关系式及点的坐标 ;
⑵在轴上是否存在点 ,使得△是直角三角形?若存在,求出点的坐标,若不存在,请说明理由;
⑶过线段上一点,作∥轴,交抛物线于点,点在第一象限;点,当点的横坐标为何值时, 的长度最大?最大值是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,网格中每个小正方形边长为1,△ABC的顶点都在格点(网格线的交点)上.将△ABC向左平移2格,再向上平移3格,得到△A′B′C′.
(1)请在图中画出平移后的△A′B′C′;
(2)画出平移后的△A′B′C′的中线B′D′;
(3)若连接BB′,CC′,则这两条线段的关系是_______;
(4)△ABC的面积为_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,,,,.把一条长为2019个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A-B-C-D-A…的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学校准备租用一批汽车,现有甲、乙两种客车,甲种客车每辆载客量45人,乙种客车每辆载客量30人.已知1辆甲种客车和3辆乙种客车共需租金1240元,3辆甲种客车和2辆乙种客车共需租金1760元.求1辆甲种客车和1辆乙种客车的租金分别是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“国庆”期间,某电影院装修后重新开业,试营业期间统计发现,影院每天售出的电影票张数y(张)与电影票售价(元/张)之间满足一次函数关系: , 是整数,影院每天运营成本为1600元,设影院每天的利润为w(元)(利润=票房收入运营成本).
(1)试求w与之间的函数关系式;
(2)影院将电影票售价定为多少时,每天获利最大?最大利润是多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com