【题目】如图,在平行四边形ABCD中,AE平分∠BAD,交BC于点E,BF平分∠ABC,交AD于点F,AE与BF交于点P,连接EF,PD.
(1)求证:四边形ABEF是菱形;
(2)若AB=4,AD=6,∠ABC=60°,求PD.
【答案】(1)证明见解析;(2).
【解析】
(1)由四边形ABCD是平行四边形,得到AD∥BC,从而得到∠AFB=∠FBE,再由∠ABF=∠FBE,推出∠ABF=∠AFB,于是得到AB=AF,同理得出AB=BE,于是得出结论;
(2)由菱形的性质得出AE⊥BF,得到∠ABF=30°,∠BAP=∠FAP=60°从而得出AP=2,过点P作PM⊥AD于M,得到PM=,AM=1,DM=5,然后利用勾股定理求PD即可.
(1)∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AFB=∠FBE.
∵∠ABF=∠FBE,∴∠ABF=∠AFB,∴AB=AF,同理AB=BE,∴四边形ABEF是菱形;
(2)∵四边形ABEF是菱形,∴AE⊥BF.
∵∠ABC=60°,∴∠ABF=30°,∠BAP=∠FAP=60°.
∵AB=4,∴AP=2,如图,过点P作PM⊥AD于M,∴PM=,AM=1.
∵AD=6,∴DM=5,∴PD=.
科目:初中数学 来源: 题型:
【题目】下列命题中,说法正确的个数是( )
(1)两个等边三角形一定相似;(2)有一个角相等的两个菱形一定相似;
(3)两个等腰三角形腰上的高和腰对应成比例,则这两个三角形必相似;
(4)两边及第三边上的中线对应成比例的两三角形相似.
A. 1个B. 2个C. 3个D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,边长为1的正方形ABCD的对角线AC、BD相交于点O.有直角∠MPN,使直角顶点P与点O重合,直角边PM、PN分别与OA、OB重合,然后逆时针旋转∠MPN,旋转角为θ(0°<θ<90°),PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G,则下列结论中正确的是 .
(1)EF=OE;(2)S四边形OEBF:S正方形ABCD=1:4;(3)BE+BF=OA;(4)在旋转过程中,当△BEF与△COF的面积之和最大时,AE=;(5)OGBD=AE2+CF2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,△ACD内接于⊙O,延长AB,CD相交于点E,若∠CAD=35°,∠CDA=40°,则∠E的度数是( )
A.20°B.25°C.30°D.35°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于反比例函数,下列说法不正确的是( )
A. 函数图象分别位于第一、第三象限
B. 当x>0时,y随x的增大而减小
C. 若点A(x1,y1),B(x2,y2)都在函数图象上,且x1<x2,则y1>y2
D. 函数图象经过点(1,2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,菱形ABCD的顶点A在x轴负半轴上,顶点B在x轴正半轴上.若抛物线p=ax2-10ax+8(a>0)经过点C、D,则点B的坐标为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在锐角△ABC中,AB=5,tanC=3,BD⊥AC于点D,BD=3,点P从点A出发,以每秒1个单位长度的速度沿AB向终点B运动,过点P作PE∥AC交边BC于点E,以PE为边作Rt△PEF,使∠EPF=90°,点F在点P的下方,且EF∥AB.设△PEF与△ABD重叠部分图形的面积为S(平方单位)(S>0),点P的运动时间为t(秒)(t>0).
(1)直接写出线段AC的长为 .
(2)当△PEF与△ABD重叠部分图形为四边形时,求S与t之间的函数关系式,并写出t的取值范围.
(3)若边EF所在直线与边AC交于点Q,连结PQ,如图2,
①当PQ将△PEF的面积分成1:2两部分时,求AP的长.
②直接写出△ABC的某一顶点到P、Q两点距离相等时t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题背景:如图,将绕点逆时针旋转60°得到,与交于点,可推出结论:
问题解决:如图,在中,,,.点是内一点,则点到三个顶点的距离和的最小值是___________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数的图象与轴正半轴相交,其顶点坐标为,下列结论:①;②;③;④方程有两个相等的实数根,其中正确的结论是________.(只填序号即可).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com