精英家教网 > 初中数学 > 题目详情

【题目】
(1)问题发现 如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.
填空:
①∠AEB的度数为
②线段AD,BE之间的数量关系为
(2)拓展探究 如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.
(3)解决问题 如图3,在正方形ABCD中,CD= ,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.

【答案】
(1)60°;AD=BE
(2)解:∠AEB=90°,AE=BE+2CM.

理由:如图2,

∵△ACB和△DCE均为等腰直角三角形,

∴CA=CB,CD=CE,∠ACB=∠DCE=90°.

∴∠ACD=∠BCE.

在△ACD和△BCE中,

∴△ACD≌△BCE(SAS).

∴AD=BE,∠ADC=∠BEC.

∵△DCE为等腰直角三角形,

∴∠CDE=∠CED=45°.

∵点A,D,E在同一直线上,

∴∠ADC=135°.

∴∠BEC=135°.

∴∠AEB=∠BEC﹣∠CED=90°.

∵CD=CE,CM⊥DE,

∴DM=ME.

∵∠DCE=90°,

∴DM=ME=CM.

∴AE=AD+DE=BE+2CM.


(3)解:点A到BP的距离为

理由如下:

∵PD=1,

∴点P在以点D为圆心,1为半径的圆上.

∵∠BPD=90°,

∴点P在以BD为直径的圆上.

∴点P是这两圆的交点.

①当点P在如图3①所示位置时,

连接PD、PB、PA,作AH⊥BP,垂足为H,

过点A作AE⊥AP,交BP于点E,如图3①.

∵四边形ABCD是正方形,

∴∠ADB=45°.AB=AD=DC=BC= ,∠BAD=90°.

∴BD=2.

∵DP=1,

∴BP=

∵∠BPD=∠BAD=90°,

∴A、P、D、B在以BD为直径的圆上,

∴∠APB=∠ADB=45°.

∴△PAE是等腰直角三角形.

又∵△BAD是等腰直角三角形,点B、E、P共线,AH⊥BP,

∴由(2)中的结论可得:BP=2AH+PD.

=2AH+1.

∴AH=

②当点P在如图3②所示位置时,

连接PD、PB、PA,作AH⊥BP,垂足为H,

过点A作AE⊥AP,交PB的延长线于点E,如图3②.

同理可得:BP=2AH﹣PD.

=2AH﹣1.

∴AH=

综上所述:点A到BP的距离为


【解析】解:(1)①如图1, ∵△ACB和△DCE均为等边三角形,
∴CA=CB,CD=CE,∠ACB=∠DCE=60°.
∴∠ACD=∠BCE.
在△ACD和△BCE中,

∴△ACD≌△BCE(SAS).
∴∠ADC=∠BEC.
∵△DCE为等边三角形,
∴∠CDE=∠CED=60°.
∵点A,D,E在同一直线上,
∴∠ADC=120°.
∴∠BEC=120°.
∴∠AEB=∠BEC﹣∠CED=60°.
所以答案是:60°.
②∵△ACD≌△BCE,
∴AD=BE.
所以答案是:AD=BE.

【考点精析】本题主要考查了等腰三角形的性质和等边三角形的性质的相关知识点,需要掌握等腰三角形的两个底角相等(简称:等边对等角);等边三角形的三个角都相等并且每个角都是60°才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ABC的边AC与⊙O相交于C,D两点,且经过圆心O,边AB与⊙O相切,切点为B.如果∠A=34°,那么∠C等于(
A.28°
B.33°
C.34°
D.56°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠1+∠2=180°,∠B=∠D.说明ABCD的理由.

补全下面的说理过程,并在括号内填上适当的理由

解:∵∠1+∠2=180°(已知)

∠2=∠AHB   

   (等量代换)

DEBF   

∴∠D=∠      

∵∠   =∠B(等量代换)

ABCD   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,正方形ABCD中,绕点A顺时针旋转,它的两边长分别交CBDC或它们的延长线于点MN于点H

如图,当A旋转到时,请你直接写出AHAB的数量关系;

如图,当绕点A旋转到时,中发现的AHAB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】列方程解应用题:五莲县新玛特购物中心第一次用5000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的倍多15件,甲、乙两种商品的进价和售价如下表(注:获利=售价﹣进价)

进价(元/件)

20

30

售价(元/件)

29

40

(1)新玛特购物中心将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?

(2)该购物中心第二次以第一次的进价又购进甲、乙两种商品,其中甲种商品的件数不变,乙种商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得总利润比第一次获得的总利润多160元,求第二次乙种商品是按原价打几折销售?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费,分两档收费:第一档是当月用电量不超过240度时实行基础电价;第二档是当用电量超过240度时,其中的240度仍按照基础电价计费,超过的部分按照提高电价收费.设每个家庭月用电量为x 度时,应交电费为y 元.具体收费情况如折线图所示,请根据图象回答下列问题:

(1)“基础电价____________ 度;

(2)求出当x240 时,y与x的函数表达式;

(3)若紫豪家六月份缴纳电费132元,求紫豪家这个月用电量为多少度?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,点E是边BC的中点,直线EF交正方形外角的平分线于点F,交DC于点G,且AE⊥EF.

(1)当AB=2时,求GC的长;

(2)求证:AE=EF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形OABC的顶点A、C分别在x轴和y轴上,点B的坐标为(2,3).双曲线y= (x>0)的图象经过BC的中点D,且与AB交于点E,连接DE.

(1)求k的值及点E的坐标;
(2)若点F是OC边上一点,且△FBC∽△DEB,求直线FB的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列命题:有两个角和第三个角的平分线对应相等的两个三角形全等;有两条边和第三条边上的中线对应相等的两个三角形全等;有两条边和第三条边上的高对应相等的两个三角形全等.其中正确的是(  )

A. ①② B. ②③ C. ①③ D. ①②③

查看答案和解析>>

同步练习册答案