精英家教网 > 初中数学 > 题目详情

【题目】如图,矩形OABC的顶点A、C分别在x轴和y轴上,点B的坐标为(2,3).双曲线y= (x>0)的图象经过BC的中点D,且与AB交于点E,连接DE.

(1)求k的值及点E的坐标;
(2)若点F是OC边上一点,且△FBC∽△DEB,求直线FB的解析式.

【答案】
(1)

解:∵BC∥x轴,点B的坐标为(2,3),

∴BC=2,

∵点D为BC的中点,

∴CD=1,

∴点D的坐标为(1,3),

代入双曲线y= (x>0)得k=1×3=3;

∵BA∥y轴,

∴点E的横坐标与点B的横坐标相等,为2,

∵点E在双曲线上,

∴y=

∴点E的坐标为(2,


(2)

解:∵点E的坐标为(2, ),B的坐标为(2,3),点D的坐标为(1,3),

∴BD=1,BE= ,BC=2

∵△FBC∽△DEB,

即:

∴FC=

∴点F的坐标为(0,

设直线FB的解析式y=kx+b(k≠0)

解得:k= ,b=

∴直线FB的解析式y=


【解析】(1)首先根据点B的坐标和点D为BC的中点表示出点D的坐标,代入反比例函数的解析式求得k值,然后将点E的横坐标代入求得E点的纵坐标即可;(2)根据△FBC∽△DEB,利用相似三角形对应边的比相等确定点F的坐标后即可求得直线FB的解析式.
【考点精析】根据题目的已知条件,利用反比例函数的图象和反比例函数的性质的相关知识可以得到问题的答案,需要掌握反比例函数的图像属于双曲线.反比例函数的图象既是轴对称图形又是中心对称图形.有两条对称轴:直线y=x和 y=-x.对称中心是:原点;性质:当k>0时双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小; 当k<0时双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,有一张长40cm,宽30cm的长方形硬纸片,截去四个小正方形之后,折成如图2所示的无盖纸盒,设无盖纸盒高为xcm

用关于x的代数式分别表示无盖纸盒的长和宽.

若纸盒的底面积为,求纸盒的高.

现根据中的纸盒,制作了一个与下底面相同大小的矩形盒盖,并在盒盖上设计了六个总面积为的矩形图案如图3所示,每个图案的高为ycmA图案的宽为xcm,之后图案的宽度依次递增1cm,各图案的间距、A图案与左边沿的间距、F图案与右边沿的间距均相等,且不小于,求x的取值范围和y的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】
(1)问题发现 如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.
填空:
①∠AEB的度数为
②线段AD,BE之间的数量关系为
(2)拓展探究 如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.
(3)解决问题 如图3,在正方形ABCD中,CD= ,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】右图为手的示意图,在各个手指间标记字母ABCD.请你按图中箭头所指方向(即ABCDCBABC…的方式)从A开始数连续的正整数1234…,当数到12时,对应的字母是 ;当字母C201次出现时,恰好数到的数是 ;当字母C2n+1次出现时(n为正整数),恰好数到的数是 (用含n的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.
(1)操作发现 如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:
② 线段DE与AC的位置关系是
②设△BDC的面积为S1 , △AEC的面积为S2 , 则S1与S2的数量关系是

(2)猜想论证 当△DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.
(3)拓展探究 已知∠ABC=60°,点D是角平分线上一点,BD=CD=4,DE∥AB交BC于点E(如图4).若在射线BA上存在点F,使SDCF=SBDE , 请直接写出相应的BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB是⊙O的直径,AD切⊙O于点A, .则下列结论中不一定正确的是(
A.BA⊥DA
B.OC∥AE
C.∠COE=2∠CAE
D.OD⊥AC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明在学习三角形知识时,发现如下三个有趣的结论:在Rt△ABC中,∠A=90°,BD平分∠ABC,M为直线AC上一点,ME⊥BC,垂足为E,∠AME的平分线交直线AB于点F.

(1)如图①,M为边AC上一点,则BD、MF的位置关系是

如图②,M为边AC反向延长线上一点,则BD、MF的位置关系是

如图③,M为边AC延长线上一点,则BD、MF的位置关系是

(2)请就图①、图②、或图③中的一种情况,给出证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD的对角线ACBD相交于OEF经过点O,分别交ADBCEF,已知ABCD的面积是,则图中阴影部分的面积是  

A. 12 B. 10 C. D.

查看答案和解析>>

同步练习册答案