【题目】如图1,有一张长40cm,宽30cm的长方形硬纸片,截去四个小正方形之后,折成如图2所示的无盖纸盒,设无盖纸盒高为xcm.
用关于x的代数式分别表示无盖纸盒的长和宽.
若纸盒的底面积为,求纸盒的高.
现根据中的纸盒,制作了一个与下底面相同大小的矩形盒盖,并在盒盖上设计了六个总面积为的矩形图案如图3所示,每个图案的高为ycm,A图案的宽为xcm,之后图案的宽度依次递增1cm,各图案的间距、A图案与左边沿的间距、F图案与右边沿的间距均相等,且不小于,求x的取值范围和y的最小值.
【答案】(1)长,宽,(2)高为5cm,(3)x的取值范围为:,y的最小值为10.
【解析】
根据长两个小正方形的长,宽两个小正方形的宽即可得到答案,
根据面积长宽,列出关于x的一元二次方程,解之即可,
设各图案的间距、A图案与左边沿的间距、F图案与右边沿的间距为m,关于x的一元一次不等式,解之即可,根据面积长宽,列出y关于x的反比例函数,根据反比例函数的增减性求最值.
根据题意得:长,宽,
根据题意得:
整理得:
解得:舍去,,
纸盒的高为5cm,
设各图案的间距、A图案与左边沿的间距、F图案与右边沿的间距为m,
,
,
解得:,
根据题意得:,
,
y随着x的增大而减小,
当取到最大值时,y取到最小值,
即当时,,
x的取值范围为:,y的最小值为10.
科目:初中数学 来源: 题型:
【题目】AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=a°.则下列结论: ①∠BOE=(180﹣a)°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正确结论__________(填编号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC的边AC与⊙O相交于C,D两点,且经过圆心O,边AB与⊙O相切,切点为B.如果∠A=34°,那么∠C等于( )
A.28°
B.33°
C.34°
D.56°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则S△DEF:S△AOB的值为( )
A.1:3
B.1:5
C.1:6
D.1:11
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=5,BC=3,点E为射线BC上一动点,将△ABE沿AE折叠,得到△AB′E.若B′恰好落在射线CD上,则BE的长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图已知∠1=∠2,∠BAD=∠BCD,则下列结论:①AB∥CD,②AD∥BC,③∠B=∠D,④∠D=∠ACB,正确的有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠1+∠2=180°,∠B=∠D.说明AB∥CD的理由.
补全下面的说理过程,并在括号内填上适当的理由
解:∵∠1+∠2=180°(已知)
∠2=∠AHB( )
∴ (等量代换)
∴DE∥BF( )
∴∠D=∠ ( )
∵∠ =∠B(等量代换)
∴AB∥CD( )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,正方形ABCD中,,绕点A顺时针旋转,它的两边长分别交CB、DC或它们的延长线于点MN,于点H.
如图,当点A旋转到时,请你直接写出AH与AB的数量关系;
如图,当绕点A旋转到时,中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形OABC的顶点A、C分别在x轴和y轴上,点B的坐标为(2,3).双曲线y= (x>0)的图象经过BC的中点D,且与AB交于点E,连接DE.
(1)求k的值及点E的坐标;
(2)若点F是OC边上一点,且△FBC∽△DEB,求直线FB的解析式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com