精英家教网 > 初中数学 > 题目详情

【题目】如图,在矩形ABCD中,AB=5,BC=3,点E为射线BC上一动点,将△ABE沿AE折叠,得到△AB′E.若B′恰好落在射线CD上,则BE的长为

【答案】 或15
【解析】解:如图1,
∵将△ABE沿AE折叠,得到△AB′E,
∴AB′=AB=5,B′E=BE,∴CE=3﹣BE,∵AD=3,∴DB′=4,∴B′C=1,∵B′E2=CE2+B′C2
∴BE2=(3﹣BE)2+12
∴BE=
如图2,

∵将△ABE沿AE折叠,得到△AB′E,
∴AB′=AB=5,
∵CD∥AB,
∴∠1=∠3,
∵∠1=∠2,
∴∠2=∠3,
∵AE垂直平分BB′,
∴AB=BF=5,
∴CF=4,
∵CF∥AB,
∴△CEF∽△ABE,

=
∴CE=12,∴BE=15,
综上所述:BE的长为: 或15,
所以答案是: 或15.
【考点精析】掌握矩形的性质和翻折变换(折叠问题)是解答本题的根本,需要知道矩形的四个角都是直角,矩形的对角线相等;折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(1)指出数轴上 A、B、C、D、E 各点分别表示什么数;

(2)按从小到大顺序排列,将它们用“<”号连接起来;

(3)写出离 C 3 个单位的点表示的数;

(4)写出离 C m 个单位的点表示的数(m>0).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,AB=10,BC=13,CD=12,AD=5,AD⊥CD,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,点C的坐标为(0,3),点A在x轴的负半轴上,点D、M分别在边AB、OA上,且AD=2DB,AM=2MO,一次函数y=kx+b的图象过点D和M,反比例函数y=的图象经过点D,与BC的交点为N.

(1)求反比例函数和一次函数的解析式;

(2)若点P在直线DM上,且使△OPM的面积与四边形OMNC的面积相等,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,正比例函数与反比例函数的图象分别交于AC两点,已知点B与点D关于坐标原点O成中心对称,且点B的坐标为其中

四边形ABCD的是______填写四边形ABCD的形状

当点A的坐标为时,四边形ABCD是矩形,求mn的值.

试探究:随着km的变化,四边形ABCD能不能成为菱形?若能,请直接写出k的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,有一张长40cm,宽30cm的长方形硬纸片,截去四个小正方形之后,折成如图2所示的无盖纸盒,设无盖纸盒高为xcm

用关于x的代数式分别表示无盖纸盒的长和宽.

若纸盒的底面积为,求纸盒的高.

现根据中的纸盒,制作了一个与下底面相同大小的矩形盒盖,并在盒盖上设计了六个总面积为的矩形图案如图3所示,每个图案的高为ycmA图案的宽为xcm,之后图案的宽度依次递增1cm,各图案的间距、A图案与左边沿的间距、F图案与右边沿的间距均相等,且不小于,求x的取值范围和y的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是一个三角点阵,从上向下数有无数多行,其中第一行有1个点,第二行有2个点,第三行有4个点,第四行有8个点,….那么这个三角点阵中前n行的点数之和可能是(  )

A. 510 B. 511 C. 512 D. 513

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某餐厅计划购买12张餐桌和一批椅子(不少于12把),现从甲、乙两商场了解到同一型号的餐桌报价都为每张200元,餐椅报价都为每把50元.甲商场规定:每购买一张餐桌赠送一把餐椅;乙商场规定:所有餐桌、餐椅均按报价的八五折销售,那么,什么情况下到甲商场购买更优惠.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】右图为手的示意图,在各个手指间标记字母ABCD.请你按图中箭头所指方向(即ABCDCBABC…的方式)从A开始数连续的正整数1234…,当数到12时,对应的字母是 ;当字母C201次出现时,恰好数到的数是 ;当字母C2n+1次出现时(n为正整数),恰好数到的数是 (用含n的代数式表示).

查看答案和解析>>

同步练习册答案