【题目】如图1,抛物线平移后过点A(8,,0)和原点,顶点为B,对称轴与轴相交于点C,与原抛物线相交于点D.
(1)求平移后抛物线的解析式并直接写出阴影部分的面积;
(2)如图2,直线AB与轴相交于点P,点M为线段OA上一动点,为直角,边MN与AP相交于点N,设,试探求:
①为何值时为等腰三角形;
②为何值时线段PN的长度最小,最小长度是多少.
【答案】(1)平移后抛物线的解析式,= 12;(2)①,②当=3时,PN取最小值为.
【解析】
(1)设平移后抛物线的解析式y=x2+bx,将点A(8,0)代入,根据待定系数法即可求得平移后抛物线的解析式,再根据割补法由三角形面积公式即可求解;
(2)作NQ垂直于x轴于点Q,
①分当MN=AN时,当AM=AN时,当MN=MA时,三种情况讨论可得△MAN为等腰三角形时t的值;
②由MN所在直线方程为y=,与直线AB的解析式y=﹣x+6联立,得xN的最小值为6,此时t=3,PN取最小值为.
(1)设平移后抛物线的解析式,
将点A(8,,0)代入,得=,
所以顶点B(4,3),
所以S阴影=OCCB=12;
(2)设直线AB解析式为y=mx+n,将A(8,0)、B(4,3)分别代入得
,解得:,
所以直线AB的解析式为,作NQ垂直于x轴于点Q,
①当MN=AN时, N点的横坐标为,纵坐标为,
由三角形NQM和三角形MOP相似可知,得,解得(舍去).
当AM=AN时,AN=,由三角形ANQ和三角形APO相似可知,,MQ=,
由三角形NQM和三角形MOP相似可知得:,
解得:
t=12(舍去);
当MN=MA时,故是钝角,显然不成立,
故;
②由MN所在直线方程为y=,与直线AB的解析式y=﹣x+6联立,
得点N的横坐标为XN=,即t2﹣xNt+36﹣xN=0,
由判别式△=x2N﹣4(36﹣)≥0,得xN≥6或xN≤﹣14,
又因为0<xN<8,
所以xN的最小值为6,此时t=3,
当t=3时,N的坐标为(6,),此时PN取最小值为.
科目:初中数学 来源: 题型:
【题目】如图,在RtΔABC中,∠ACB=90°,AC=9,BC=12,AD是∠BAC的平分线,若点P,Q分别是AD和AC上的动点,则PC+PQ的最小值是( )
A.B.C.12D.15
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】【问题情境】
课外兴趣小组活动时,老师提出了如下问题:
如图①,△ABC中,若AB=12,AC=8,求BC边上的中线AD的取值范围.
小明在组内经过合作交流,得到了如下的解决方法:延长AD至点E,使DE=AD,连接BE.请根据小明的方法思考:
(1)由已知和作图能得到△ADC≌△EDB,依据是 .
A.SSS B.SAS C.AAS D.HL
(2)由“三角形的三边关系”可求得AD的取值范围是 .
解后反思:题目中出现“中点”、“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集中到同一个三角形之中.
【初步运用】
如图②,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.若EF=3,EC=2,求线段BF的长.
【灵活运用】
如图③,在△ABC中, ∠A=90°,D为BC中点, DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.试猜想线段BE、CF、EF三者之间的等量关系,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,反比例函数的图象经过点A(,1),射线AB与反比例函数图象交与另一点B(1, ),射线AC与轴交于点C, 轴,垂足为D.
(1)求和a的值;
(2)直线AC的解析式;
(3)如图2,M是线段AC上方反比例函数图象上一动点,过M作直线轴,与AC相交于N,连接CM,求面积的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的不等式组有且只有四个整数解,又关于x的分式方程﹣2=有正数解,则满足条件的整数k的和为( )
A. 5 B. 6 C. 7 D. 8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校为了增强学生体质,决定开设以下体育课外活动项目:A:篮球 B:乒乓球C:羽毛球 D:足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:
(1)这次被调查的学生共有 人;
(2)请你将条形统计图(2)补充完整;
(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,三角形ABC三个顶点A,B,C的坐标分别为A(1,2),B(4,3),C(3,1).把三角形A1B1C1向右平移4个单位长度,再向下平移3个单位长度,恰好得到三角形ABC,试写出三角形A1B1C1三个顶点的坐标,作出三角形ABC向右平移1个单位向下平移2个单位的图形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com