精英家教网 > 初中数学 > 题目详情

【题目】数学不仅是一门学科,也是一种文化,即数学文化.数学文化包括数学史、数学美和数学应用等多方面.古时候,在某个王国里有一位聪明的大臣,他发明了国际象棋,献给了国王,国王从此迷上了下棋,为了对聪明的大臣表示感谢,国王答应满足这位大臣的一个要求.大臣说:就在这个棋盘上放一些米粒吧.格放粒米,第格放粒米,第格放粒米,然后是粒、粒、······一只到第.”“你真傻!就要这么一点米粒?国王哈哈大笑.大臣说:就怕您的国库里没有这么多米!国王的国库里真没有这么多米吗?题中问题就是求是多少?请同学们阅读以下解答过程就知道答案了.

,

即:

事实上,按照这位大臣的要求,放满一个棋盘上的个格子需要粒米.那么到底多大呢?借助计算机中的计算器进行计算,可知答案是一个位数: ,这是一个非常大的数,所以国王是不能满足大臣的要求.请用你学到的方法解决以下问题:

我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座层塔共挂了盏灯,且相邻两层中的下一层灯数是上一层灯数的倍,则塔的顶层共有多少盏灯?

计算:

某中学数学社团开发了一款应用软件,推出了解数学题获取软件激活码的活动.这款软件的激活码为下面数学问题的答案:

已知一列数:,其中第一项是,接下来的两项是,再接下来的三项是,以此类推,求满足如下条件的所有正整数,且这一数列前项和为的正整数幂.请直接写出所有满足条件的软件激活码正整数的值.

【答案】(1)3;(2);(3)

【解析】

设塔的顶层共有盏灯,根据题意列出方程,进行解答即可.

参照题目中的解题方法进行计算即可.

由题意求得数列的每一项,及前n项和Sn=2n+1-2-n,及项数,由题意可知:2n+12的整数幂.只需将-2-n消去即可,分别分别即可求得N的值

设塔的顶层共有盏灯,由题意得

.

解得

顶层共有盏灯.

,

,

即:

.

由题意可知:20第一项,20,21第二项,20,21,22第三项,…20,21,22…,2n1n项,

根据等比数列前n项和公式,求得每项和分别为:

每项含有的项数为:123n

总共的项数为

所有项数的和为

由题意可知:2的整数幂,只需将2n消去即可,

则①1+2+(2n)=0,解得:n=1,总共有,不满足N>10

1+2+4+(2n)=0,解得:n=5,总共有 满足

1+2+4+8+(2n)=0,解得:n=13,总共有 满足

1+2+4+8+16+(2n)=0,解得:n=29,总共有 不满足

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】学校准备购进一批AB两型号节能灯,已知2只A型节能灯和3只B型节能灯共需31元;1只A型节能灯和2只B型节能灯共需19元.

(1)求一只A型节能灯和一只B型节能灯的售价各是多少元?

(2)学校准备购进这两种型号的节能灯共100只,并且A型节能灯的数量不多于B型节能灯数量的2倍,请设计出最省钱的购买方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商品的进价为每件40元,售价为每件50元,每个月可卖出200件.如果每件商品的售价每上涨2元,则每个月少卖5件,设每件商品的售价为x元,则可卖y件,每个月销售利润为w元.

1)求yx的函数关系式;

2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知梯形ABCD中,AD//BC ,∠ABC=90°BC=2AB=8,对角线AC平分∠BCD,过点DDEAC,垂足为点E,交边AB的延长线于点F,联结CF

1)求腰DC的长;

2)求∠BCF的余弦值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人在同一直线噵路上同起点,同方向同进出发,分别以不同的速度匀速跑步1500米,当甲超出乙200米时,甲停下来等候乙,甲、乙会合后,两人分别以原来的速度继续跑向终点,先到达终点的人在终点休息,在跑步的整个过程中,甲、乙两人的距离y(米)与出发的时间x(秒)之间的关系如图所示,则甲到终点时,乙距离终点______________米。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在△ABC中,AB=AC. (1)若∠A=36,在△ABC中画一条线段,能得到2个等腰三角形(不包括△ABC),这2个等腰三角形的顶角的度数分别是_____;(2)若∠A36, 当∠A=_____时,在等腰△ABC中画一条线段,能得到2个等腰三角形(不包括△ABC).(写出两个答案即可)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于x的方程(2m+1x2+4mx+2m30有两个不相等的实数根.

1)求m的取值范围;

2)是否存在实数m,使方程的两个实数根的倒数之和等于﹣1?若存在,求出m的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,直线 轴、轴分别交于点AB如图所示,点在线段的延长线上,且

1)用含字母的代数式表示点的坐标;

2)抛物线y经过点,求此抛物线的表达式;

3)在第(2)题的条件下,位于第四象限的抛物线上,是否存在这样的点:使,如果存在,求出点的坐标,如果不存在,试说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,过点A的圆O交边AB于点E,交边AD于点F,已知AD=5AE=2AF=4.如果以点D为圆心,r为半径的圆D与圆O有两个公共点,那么r的取值范围是______

查看答案和解析>>

同步练习册答案