【题目】如图,A点的坐标为(0,3),B点的坐标为(-3.0),D为x轴上的一个动点,AE⊥AD,且AE=AD,连接BE交y轴于点M
(1)若D点的坐标为(-5.0),求E点的坐标:
(2)求证:M为BE的中点
(3)当D点在x轴上运动时,探索:为定值
【答案】(1)E(3,-2);(2)详见解析;(3)
【解析】
(1) 过E点作EF⊥y轴交y轴于F点,先证明△AOD≌△EFA(AAS),根据全等三角形的性质即可得到E点的坐标;
(2)先把D点的位置画出来,再证明△AOD≌△EFA(AAS),再根据全等三角形的性质证明△BOM≌△EFM(AAS),即可证明M为BE的中点;
(3)从(1)(2)的信息可知得到,再结合即可得到的比值为定值;
(1) 过E点作EF⊥y轴交y轴于F点
∵AD⊥AE , EF⊥AF
∠AOD=∠AFE=90°
∵∠DAO+∠EAF=90°
∠EAF+∠AEF=90°
∴∠DAO=∠AEF
在△AOD和△EFA中
△AOD≌△EFA(AAS)
EF=OA=3 AF=OD=5
OF=AF-OA=5-3=2
E(3,-2)
(2)
D点在以上3个位置,
根据题意知道:AE=AD,,
又∵ ,
∴
∴△AOD≌△EFA(AAS)
∴OB=EF ∠BOM=∠EMF=90°
∠BOM=∠EMF
∴△BOM≌△EFM(AAS)
BM=EM=BE
(3) 根据(2)可知,D点在可以在3个位置,
当D点如下图的位置时,过D作直线a⊥x轴与D,过A作AG垂直直线a于G,
由(2)知△BOM≌△EFM(AAS),
∴EF=OB,
又由(1)知△AOD≌△EFA(AAS)
即:EF=OA =OB,AF=OD
∴ ,
又∵
∴=,
当D在另外两个位置时,同理可证得=;
科目:初中数学 来源: 题型:
【题目】如图,已知CO1是△ABC的中线,过点O1作O1E1∥AC交BC于点E1,连接AE1交CO1于点O2;过点O2作O2E2∥AC交BC于点E2,连接AE2交CO1于点O3;过点O3作O3E3∥AC交BC于点E3,…,如此继续,可以依次得到点O4,O5,…,On和点E4,E5,…,En.则OnEn= AC.(用含n的代数式表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】水利部门为加强防汛工作,决定对某水库大坝进行加固,大坝的横截面是梯形ABCD,如图所示,已知迎水坡面AB的长为16米,∠B=60°,背水坡面CD的长为16米,加固后大坝的横截面为梯形ABED,CE的长为8米.
(1)已知需加固的大坝长为150米,求需要填土石方多少立方米?
(2)求加固后的大坝背水坡面DE的坡度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】七(1)班同学为了解2017年某小区家庭月均用水情况,随机调查了该小区的部分家庭,并将调查数据进行如下整理.请解答以下问题:
月均用水量 | 频数(户数) | 百分比 |
6 | ||
16 | ||
10 | ||
4 | ||
2 |
(1)请将下列频数分布表和频数分布直方图补充完整;
(2)求该小区月均用水量不超过的家庭占被调查家庭总数的百分比;
(3)若该小区有1000户家庭,根据调查数据估计该小区月均用水量超过的家庭数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,对于给定的两点,,若存在点,使得的面积等于1,即,则称点为线段的“单位面积点”.
解答下列问题:
如图,在平面直角坐标系中,点的坐标为.
(1)在点,,,中,线段的“单位面积点”是______.
(2)已知点,,点,是线段的两个“单位面积点”,点在的延长线上,若,直接写出点纵坐标的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,三角形(记作)在方格中,方格纸中的每个小方格都是边长为1个单位的正方形,三个顶点的坐标分别是,,,先将向上平移3个单位长度,再向右平移2个单位长度,得到.
(1)在图中画出;
(2)点,的坐标分别为______、______;
(3)若轴有一点,使与面积相等,求出点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知A,B,C,D为矩形的四个顶点,AB=16 cm,AD=6 cm,动点P,Q分别从点A,C同时出发,点P以3 cm/s的速度向点B移动,一直到点B为止,点Q以2 cm/s的速度向点D移动,当点P停止运动时,点Q也停止运动.问:
(1)P,Q两点从开始出发多长时间时,四边形PBCQ的面积是33 cm2?
(2)P,Q两点从开始出发多长时间时,点P与点Q之间的距离是10 cm?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与探究
如图是一个正方形纸片,如果将正方形纸片绕点逆时针旋转角度,得到正方形,交于点,的延长线交于点,连接、.
(1)求证:平分;
(2)直接写出线段、、之间的数量关系;
(3)连接,,,,试探究在旋转过程中,四边形能否成为矩形?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图(1),将一个长为4a,宽为2b的长方形,沿图中虚线均匀分成4个小长方形,然后按图(2)形状拼成一个正方形.
①图(2)中的空白部分的边长是多少?(用含a,b的式子表示)
②观察图(2),用等式表示出,ab和的数量关系;
(2)如图所示,在△ABC与△DCB中,AC与BD相交于点E,且∠A=∠D,AB=DC.求证:△ABE≌△DCE;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com