【题目】如图,已知一条直线过点(0,4),且与抛物线y= x2交于A,B两点,其中点A的横坐标是﹣2.
(1)求这条直线的函数关系式及点B的坐标.
(2)在x轴上是否存在点C,使得△ABC是直角三角形?若存在,求出点C的坐标,若不存在,请说明理由.
(3)过线段AB上一点P,作PM∥x轴,交抛物线于点M,点M在第一象限,点N(0,1),当点M的横坐标为何值时,MN+3MP的长度最大?最大值是多少?
【答案】
(1)解:∵点A是直线与抛物线的交点,且横坐标为﹣2,
∴y= ×(﹣2)2=1,A点的坐标为(﹣2,1),
设直线的函数关系式为y=kx+b,
将(0,4),(﹣2,1)代入得 ,
解得 ,
∴直线y= x+4,
∵直线与抛物线相交,
∴ x+4= x2,
解得:x=﹣2或x=8,
当x=8时,y=16,
∴点B的坐标为(8,16)
(2)如图1,连接AC,BC,
∵由A(﹣2,1),B(8,16)可求得AB2=325.
设点C(m,0),同理可得AC2=(m+2)2+12=m2+4m+5,
BC2=(m﹣8)2+162=m2﹣16m+320,
①若∠BAC=90°,则AB2+AC2=BC2,即325+m2+4m+5=m2﹣16m+320,
解得:m=﹣ ;
②若∠ACB=90°,则AB2=AC2+BC2,即325=m2+4m+5+m2﹣16m+320,
解得:m=0或m=6;
③若∠ABC=90°,则AB2+BC2=AC2,即m2+4m+5=m2﹣16m+320+325,
解得:m=32;
∴点C的坐标为(﹣ ,0),(0,0),(6,0),(32,0)
(3)解:设M(a, a2),如图2,设MP与y轴交于点Q,
在Rt△MQN中,由勾股定理得MN= = a2+1,
又∵点P与点M纵坐标相同,
∴ +4= a2,
∴x= ,
∴点P的横坐标为 ,
∴MP=a﹣ ,
∴MN+3PM= +1+3(a﹣ )=﹣ a2+3a+9,
∴当a=﹣ =6,
又∵2≤6≤8,
∴取到最大值18,
∴当M的横坐标为6时,MN+3PM的长度的最大值是18.
【解析】(1)由抛物线的解析式可求得点A的纵坐标,然后利用待定系数法确定直线的解析式,将直线和抛物线的解析式联立可求得交点的坐标;
(2)过点B作BG∥x轴,过点A作AG∥y轴,交点为G,然后分若∠BAC=90°,则AB2+AC2=BC2;若∠ACB=90°,则AB2=AC2+BC2;若∠ABC=90°,则AB2+BC2=AC2三种情况求得m的值,从而确定点C的坐标;
(3)设M(a,a2),MP与y轴交于点Q,在Rt△MQN中依据勾股定理可求得MN的长(用含a的式子表示),然后根据点P与点M纵坐标相同得到x=,从而得到MN+3PM关于a的函数关系是,最后,依据二次函数的性质可得到MN+3PM的长度的最大值.
科目:初中数学 来源: 题型:
【题目】轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B港相距x千米.根据题意,可列出的方程是:( )
A.B.
C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读以下材料:对于三个数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{﹣1,2,3}==;min{﹣1,2,3}=﹣1;min{﹣1,2,a}=
解决下列问题:
(1)若min{2,2x+2,4﹣2x}=2,则x的范围__________;
(2)①如果M{2,x+1,2x}=min{2,x+1,2x},求x;
②根据①,你发现了结论“如果M{a,b,c}=min{a,b,c},那么__________(填a,b,c的大小关系)”.
③运用②的结论,若M{2x+y+2,x+2y,2x﹣y}=min{2x+y+2,x+2y,2x﹣y},求x+y的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,线段AB上有一任意点C,点M是线段AC的中点,点N是线段BC的中点,当AB=6cm时,
(1)求线段MN的长.
(2)当C在AB延长线上时,其他条件不变,求线段MN的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y1=kx+b和反比例函数y2= 的图象交于A、B两点.
(1)求一次函数y1=kx+b和反比例函数y2= 的解析式;
(2)观察图象写出y1<y2时,x的取值范围为;
(3)求△OAB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠B=90°,AC=10,∠C=30°点D从点C出发沿CA方向以每秒2个单位长度的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长度的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0),过点D作DF⊥BC于点F,连接DE、EF.
(1)DF= ;(用含t的代数式表示)
(2)求证:△AED≌△FDE;
(3)当t为何值时,△DEF是等边三角形?说明理由;
(4)当t为何值时,△DEF为直角三角形?(请直接写出t的值.)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,直线与直线交于点,.小明将一个含的直角三角板如图1所示放置,使顶点落在直线上,过点作直线交直线于点(点在左侧).
(1)若,,则__________.
(2)若的角平分线交直线于点,如图2.
①当,时,求证:.
②小明将三角板保持并向左平移,运动过程中,__________.(用表示).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com