【题目】如图,在直角坐标系中,抛物线y=﹣(x+1)2+4与x轴交于点A、B,与y轴交于点C.
(1)写出抛物线顶点D的坐标 ;
(2)点D1是点D关于y轴的对称点,判断点D1是否在直线AC上,并说明理由;
(3)若点E是抛物线上的点,且在直线AC的上方,过点E作EF⊥x轴交线段AC于点F,求线段EF的最大值.
【答案】(1) (﹣1,4);(2)见解析;(3) 2.25.
【解析】
(1)根据二次函数的解析式直接写出即可;
(2)先根据二次函数求出A、C的坐标,再用待定系数法确定直线AC的关系式,再求出
点D1,把它代入直线判断是否再直线上;
(3)设点E(x,﹣x2﹣2x+3),F(x,x+3),则EF=(﹣x2﹣2x+3)﹣(x+3)=﹣x2﹣3x=﹣(x+1.5)2+2.25, 则可知x=-1.5时,EF的最大值2.25.
解:(1)∵y=﹣(x+1)2+4,
∴抛物线顶点D的坐标是(﹣1,4).
故答案为(﹣1,4);
(2)点D1在直线AC上,理由如下:
∵抛物线y=﹣(x+1)2+4与x轴交于点A、B,与y轴交于点C,
∴当y=0时,﹣(x+1)2+4=0,解得x=1或﹣3,A(﹣3,0),B(1,0),
当x=0时,y=﹣1+4=3,C(0,3).
设直线AC的解析式为y=kx+b,
由题意得,解得,
∴直线AC的解析式为y=x+3.
∵点D1是点D关于y轴的对称点,D(﹣1,4).
∴D1(1,4),
∵x=1时,y=1+3=4,
∴点D1在直线AC上;
(3)设点E(x,﹣x2﹣2x+3),则F(x,x+3),
∵EF=(﹣x2﹣2x+3)﹣(x+3)=﹣x2﹣3x=﹣(x+1.5)2+2.25,
∴线段EF的最大值是2.25.
科目:初中数学 来源: 题型:
【题目】如图,在路灯下,小明的身高如图中线段AB所示,他在地面上的影子如图中线段AC所示,小亮的身高如图中线段FG所示,路灯灯泡在线段DE上.
(1)请你确定灯泡所在的位置,并画出小亮在灯光下形成的影子.
(2)如果小明的身高AB=1.6m,他的影子长AC=1.4m,且他到路灯的距离AD=2.1m,求灯泡的高.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个不透明的口袋里装有四个小球,球面上分别标有数字﹣2、0、1、2,它们除数字不同外没有任何区别,每次实验先搅拌均匀.
(1)从中任取一球,求抽取的数字为负数的概率;
(2)从中任取一球,将球上的数字记为x(不放回);再任取一球,将球上的数字记为y,试用画树状图(或列表法)表示所有可能出现的结果,并求“x+y>0”的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数 y=ax+bx+c(a≠0)的图象如图所示,A(﹣ 1,3)是抛物线的顶点,则以下结论中正确的是( )
A. a<0,b>0,c>0
B. 2a+b=0
C. 当 x<0 时,y 随 x 的增大而减小
D. ax2+bx+c﹣3≤0
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.
(1)求A、B、C的坐标;
(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N.若点P在点Q左边,当矩形PQMN的周长最大时,求△AEM的面积;
(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ.过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=DQ,求点F的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为预防疾病,某校对教室进行“药熏消毒”.已知药物燃烧阶段,室内每立方米空气中的含药量(mg)与燃烧时间(分钟)成正比例;燃烧后, 与成反比例(如图所示).现测得药物10分钟燃完,此时教室内每立方米空气含药量为8mg.据以上信息解答下列问题:
(1)求药物燃烧时与的函数关系式.(2)求药物燃烧后与的函数关系式.
(3)当每立方米空气中含药量低于1.6mg时,对人体方能无毒害作用,那么从消毒开始,经多长时间学生才可以回教室?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c,当x=3时,y有最小值﹣4,且图象经过点(﹣1,12).
(1)求此二次函数的解析式;
(2)该抛物线交x轴于点A,B(点A在点B的左侧),交y轴于点C,在抛物线对称轴上有一动点P,求PA+PC的最小值,并求当PA+PC取最小值时点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,把矩形ABCD绕点A顺时针旋转,使点B的对应点B落在DA的延长线上,若AB=2,BC=4,则点C与其对应点C的距离为( )
A. 6 B. 8 C. 2 D. 2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com