精英家教网 > 初中数学 > 题目详情

【题目】O为直线AB上一点,过点O作射线OC,使∠BOC=65°将一直角三角形的直角三角板的直角顶点放在点O.

1)如图1,将三角板MON的一边ON与射线OB重合,则∠MOC=___________

2)如图2,将三角板MON绕点O逆时针旋转一定角度,此时OC是∠MOB的角平分线,求旋转角∠BON和∠CON的度数;

3)将三角板MON绕点O逆时针旋转至图3时,∠NOC=AOM,求∠NOB的度数.

【答案】125°225°370°

【解析】试题分析:(1)根据∠MON和∠BOC的度数可以得到∠MON的度数;

2)根据角平分线的性质,由∠BOC=65°,可以求得∠BOM的度数,然后由∠NOM-90°,可得∠BON的度数,从而得解;

3)由∠BOC=65°NOM=90°NOC=AOM,从而可求得∠NOC的度数,然后由∠BOC=65°,从而得解.

试题解析:1MON=90BOC=65°

MOC=MON-BOC=90°-65°=25°

2∠BOC=65°,OC平分∠MOB

MOB=2BOC=130°

BON=MOB-MON=130°-90°=40°

CON=COB-BON=65°-40°=25°

3NOC=AOM AOM=4NOC BOC=65°

AOC=AOB-BOC=180°-65°=115°

MON=90°

AOM+NOC=AOC-MON=115°-90°=25°

4NOC+NOC=25°

NOC=5°

NOB=NOC+BOC=70°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在四边形ABCD中,ADBCEAB边上一点,BCE=15°,EFADDC于点F.

(1)依题意补全图形,求∠FEC的度数

(2)若∠A=140°,求∠AEC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,顶点为M的抛物线y=a(x+1)2﹣4分别与x轴相交于点A,B(点A在点B的右侧),与y轴相交于点C(0,﹣3).

(1)求抛物线的函数表达式;
(2)判断△BCM是否为直角三角形,并说明理由.
(3)抛物线上是否存在点N(点N与点M不重合),使得以点A,B,C,N为顶点的四边形的面积与四边形ABMC的面积相等?若存在,求出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线ABCD相交于点OOE平分∠BOD

1∠AOC=70°∠DOF=90°,求∠EOF的度数;

2OF平分∠COE∠BOF=15°,若设∠AOE=x°

用含x的代数式表示∠EOF;

∠AOC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,两个直角∠AOB∠COD有相同的顶点O,下列结论:①∠AOC=∠BOD

∠AOC∠BOD=90°;③若OC平分∠AOB,则OB平分∠COD;④∠AOD的平分线与∠COB的平分线是同一条射线. 其中正确的个数有( )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】去冬今春,我市部分地区遭受了罕见的旱灾,旱灾无情人有情.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.

1)求饮用水和蔬菜各有多少件?

2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;

3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司以每吨元的价格收购了吨某种药材,若直接在市场上销售,每吨的售价是元.该公司决定加工后再出售,相关信息如下表所示:

工艺

每天可加工药材的吨数

成品率

成品售价

(元/

粗加工

14

80%

6000

精加工

6

60%

11000

(:①成品率80%指加工100吨原料能得到80吨可销售药材;②加工后的废品不产生效益.)

受市场影响,该公司必须在天内将这批药材加工完毕.

(1)若全部粗加工,可获利_______________________

(2)若尽可能多的精加工,剩余的直接在市场上销售,可获利_____________

(3)若部分粗加工,部分精加工,恰好天完成,求可获利多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图示三角形ABC是等边三角形,DBC边上的一点三角形ABD经过旋转后到达三角形ACE的位置.

(1)旋转中心是哪一点?

(2)旋转了多少度?

(3)如果MAB的中点那么经过上述旋转后M到了什么位置?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠C=90°,∠A=30°,BC=2,按照如下步骤作图:①分别以点A,B为圆心,大于线段AB长度的一半为半径画弧,两弧分别相交于点M,N;②作直线MN分别交AB,AC于点D,E,连结BE,则BE的长是(
A.
B.3
C.
D.

查看答案和解析>>

同步练习册答案