精英家教网 > 初中数学 > 题目详情

【题目】如图,二次函数y=ax2+bx+ca0)的图象与x轴交于AB两点,与y轴交于点C,且OA=OC,则下列结论:①abc0acb+1=0OAOB=.其中正确结论的序号是_____

【答案】①③④

【解析】观察函数图象可得抛物线开口向下可知a0;与y轴交点在y轴正半轴可知c0;对称轴在y轴右侧可知0;顶点在x轴上方可知0

①∵a0c00

b0,

abc0,①成立;

②∵0

0②不成立;

③∵OA=OC,

xA=﹣c,

将点A(﹣c,0)代入y=ax2+bx+c中,

得:ac2﹣bc+c=0,即ac﹣b+1=0,③成立;

④∵OA=﹣xA,OB=xB,xAxB=

OAOB=④成立.

综上可知:①③④成立.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,PAD边上一点,沿直线BP将△ABP翻折至△EBP(点A的对应点为点E),PECD相交于点O,且OE=OD.

(1)求证:PE=DH;

(2)若AB=10,BC=8,求DP的长.

【答案】1见解析;2

【解析】试题分析:(1) 先证明DOP≌△EOH再利用等量代换得到PE=DH.

(2) DP=x RtBCH中,先用 x表示三角形三边,利用勾股定理列式解方程.

试题解析:

1)解:证明:OD=OED=∠E=90°DOP=∠EOH

∴△DOP≌△EOH

OP=OH

PO+OE=OH+OD

PE=DH.

2)解:设DP=x,则EH=xBH=10﹣x

CH=CDDH=CDPE=10﹣8﹣x=2+x

Rt△BCH中,BC2+CH2=BH2

2+x2+82=10﹣x2

x=,

DP=

型】解答
束】
25

【题目】某文教店老板到批发市场选购A,B两种品牌的绘图工具套装,每套A品牌套装进价比B品牌每套套装进价多2.5元,已知用200元购进A种套装的数量是用75元购进B种套装数量的2倍.

(1)求A,B两种品牌套装每套进价分别为多少元?

(2)若A品牌套装每套售价为13元,B品牌套装每套售价为9.5元,店老板决定,购进B品牌的数量比购进A品牌的数量的2倍还多4套,两种工具套装全部售出后,要使总的获利超过120元,则最少购进A品牌工具套装多少套?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】古希腊的毕达哥拉斯学派由古希腊哲学家毕达哥拉斯所创立,毕达哥拉斯学派认为数是万物的本原,事物的性质是由某种数量关系决定的,如他们研究各种多边形数:记第nk边形数N(nk)=n2n(n≥1,k≥3,kn都为整数),

如第1个三角形数N(1,3)=×12×1=1;

2个三角形数N(2,3)=×22×2=3;

3个四边形数N(3,4)=×32×3=9;

4个四边形数N(4,4)=×42×4=16.

(1)N(5,3)=________,N(6,5)=________;

(2)N(m,6)N(m+2,4)10,求m的值;

(3)若记yN(6,t)-N(t,5),试求出y的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,∠A=50°,点D,E分别是边AC,AB上的点(不与A,B,C重合),点P是平面内一动点(P与D,E不在同一直线上),设∠PDC=∠1,∠PEB=∠2,∠DPE=∠α.

(1)若点P在边BC上运动(不与点B和点C重合),如图(1)所示,则∠1+∠2=________

(用α的代数式表示).

(2)若点PABC的外部,如图(2)所示,则∠α,∠1,∠2之间有何关系?写出你的结论,并说明理由.

(3)当点P在边CB的延长线上运动时,试画出相应图形,标注有关字母与数字,并写出对应的∠α,∠1,∠2之间的关系式.(不需要证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在正方形网格中,每个小正方形的边长都为1个单位长度,ABC的三个顶点的位置。如图所示,

现将ABC平移后得EDF,使点B的对应点为点D,点A对应点为点E

1)画出EDF

2)线段BDAE有何关系? ____________

3)连接CDBD,则四边形ABDC的面积为_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个不透明的盒子里装有只有颜色不同的黑、白两种球共50个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是试验中的一组统计数据:

摸到球的次数

100

200

300

500

800

1000

3000

摸到白球的次数

65

124

178

302

481

599

1803

摸到白球的概率

0.65

0.62

0.593

0.604

0.601

0.599

0.601

1)请估计当很大时,摸到白球的频率将会接近______;(精确到0.1);

2)假如随机摸一次,摸到白球的概率P(白球)______

3)试估算盒子里白色的球有多少个?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算题

1-20+-14--18-13 210+-2×(-5)2

3 4

5 6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在矩形ABCD中,AD=3,CD=4,点ECD上,且DE=1.

(1)感知:如图①,连接AE,过点EEFAE,交BC于点F,连接AE,易证:△ADE≌△ECF(不需要证明);

(2)探究:如图②,点P在矩形ABCD的边AD上(点P不与点A、D重合),连接PE,过点EEFPE,交BC于点F,连接PF.求证:△PDE和△ECF相似;

(3)应用:如图③,若EFAB于点F,EFPE,其他条件不变,且△PEF的面积是6,则AP的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,以点C(1,1)为圆心,2为半径作圆,交x轴于A,B两点,点P在优弧上.

(1)求出A,B两点的坐标;

(2)试确定经过A、B且以点P为顶点的抛物线解析式;

(3)在该抛物线上是否存在一点D,使线段OP与CD互相平分?若存在,求出点D的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案