【题目】探究:
(1)如图1,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=,请直接写出BE、DF与EF之间的数量关系;
(2)如图2,若把(1)问中的条件变为“四边形ABCD中,AB=AD,∠B+∠D=,E、F分别是边BC、CD上的点,且,则(1)中的结论是否仍然成立,若成立,请证明,若不成立,请说明理由;
(3)在(2)问中,若将△AEF绕点A逆时针旋转,当点E、F分别运动到BC、CD延长线上时,如图3所示,其它条件不变,则(1)问中的结论是否发生变化?若变化,请写出结论并证明,若不变,请说明理由.
【答案】(1)BE+DF=EF;(2)成立,证明见解析;(3)BE—DF=EF,证明见解析
【解析】
(1)将△ADF绕点A顺时针旋转,使AD与AB重合,得到△ABF,然后求出∠EAF=∠EAF=45°,利用“边角边”证明△AEF和△AEF′全等,根据全等三角形对应边相等可得EF=EF′,从而得解;
(2)将△ADF绕点A顺时针旋转,使AD与AB重合,得到△ABF′,根据旋转变换的性质可得△ADF和△ABF′全等,根据全等三角形对应角相等可得∠BAF′=∠DAF,对应边相等可得AF′=AF,BF′=DF,对应角相等可得∠ABF′=∠D,再根据∠EAF=∠BAD证明∠EAF′=∠EAF,并证明E、B、F′三点共线,然后利用“边角边”证明△AEF和△AEF′全等,根据全等三角形对应边相等可得EF′=EF,从而得解;
(3)将△ADF绕点A顺时针旋转,使AD与AB重合,点F落在BC上点F′处,得到△ABF′,根据旋转变换的性质可得△ADF和△ABF′全等,根据全等三角形对应角相等可得∠BAF′=∠DAF,对应边相等可得AF′=AF,BF′=DF,再根据∠EAF=∠BAD证明∠F′AE=∠FAE,然后利用“边角边"证明△F′AE和△FAE全等,根据全等三角形对应边相等可得EF=EF′,从而求出EF=BE-DE
(1)如图1,将△ADF绕点A顺时针旋转,使AD与AB重合,得到△ABF′,
∵∠EAF=45°,
∴∠EAF′=∠EAF=45°,
在△AEF和△AEF′中,
∴△AEF≌△AEF′(SAS),
∴EF=EF′
又EF′=BE+BF′=BE+DF
∴EF=BE+DF
(2)结论EF=BE+DF仍然成立.
理由如下:如图2,将△ADF绕点A顺时针旋转,使AD与AB重合,得到△ABF′,
则△ADF≌△ABF′,
∴∠BAF′=∠DAF,AF′=AF,BF′=DF,∠ABF′=∠D,
又∵∠EAF=∠BAD,
∴∠EAF=∠DAF+∠BAE=∠BAE+∠BAF′,
∴∠EAF=∠EAF′,
又∵∠ABC+∠D=180°,
∴∠ABF′+∠ABE=180°,
∴F′、B、E三点共线,
在△AEF与△AEF′中,
∴△AEF≌△AEF′(SAS),
∴EF=EF′,
又∵EF′=BE+BF′,
∴EF=BE+DF;
(3)发生变化.EF、BE、DF之间的关系是EF=BE-DF.
理由如下:如图3,将△ADF绕点A顺时针旋转,使AD与AB重合,点F落在BC上点F′处,得到△ABF′,
∴△ADF≌△ABF′,
∴∠BAF′=∠DAF,AF′=AF,BF′=DF,
又∵∠EAF=∠BAD,且∠BAF′=∠DAF,
∴∠F′AE=∠BAD-(∠BAF′+∠EAD)=∠BAD-(∠DAF+∠EAD)=∠BAD-∠FAE=∠FAE,
即∠F′AE=∠FAE,
在△F′AE与△FAE中,
∴△F′AE≌△FAE(SAS),
∴EF=EF′,
又∵BE=BF′+EF′,
∴EF′=BE-BF′,
即EF=BE-DF.
科目:初中数学 来源: 题型:
【题目】二次函数y=(a﹣1)x2+3x﹣6的图象与x轴的交点为A和B,若点B一定在坐标原点和(1,0)之间,且B点不与原点和(1,0)重合,那么a的取值范围是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为弓形AB的弦,AB=2,弓形所在圆⊙O的半径为2,点P为弧AB上动点,点I为△PAB的内心,当点P从点A向点B运动时,点I移动的路径长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y=x与抛物线交于A、B两点,直线l为y=﹣1.
(1)求抛物线的解析式;
(2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由.
(3)知F(x0,y0)为平面内一定点,M(m,n)为抛物线上一动点,且点M到直线l的距离与点M到点F的距离总是相等,求定点F的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在正方形网格中,△ABC的顶点坐标分别为(﹣1,0),(﹣2,﹣2),(﹣4,﹣1).请在所给直角坐标系中按要求画图和解答下列问题:
(1)将△ABC绕着某点按顺时针方向旋转得到△A′B'C',请直接写出旋转中心的坐标和旋转角度.
(2)画出△ABC关于点A成中心对称的△AED,若△ABC内有一点P(a,b),请直接写出经过这次变换后点P的对称点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校要开展校园文化艺术节活动,为了合理编排节目,对学生最喜爱的歌曲、舞蹈、小品、相声四类节目进行了一次随机抽样调查(每名学生必须选择且只能选择一类),并将调查结果绘制成如下不完整统计图.
请你根据图中信息,回答下列问题:
(1)本次共调查了 名学生.
(2)在扇形统计图中,“歌曲”所在扇形的圆心角等于 度.
(3)补全条形统计图(标注频数).
(4)根据以上统计分析,估计该校2000名学生中最喜爱小品的人数为 人.
(5)九年一班和九年二班各有2名学生擅长舞蹈,学校准备从这4名学生中随机抽取2名学生参加舞蹈节目的编排,那么抽取的2名学生恰好来自同一个班级的概率是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,AC=12cm,BC=24cm.动点P从点A开始沿边AC向点C以2cm/s的速度移动;动点Q从点C开始沿边CB向点B以4cm/s的速度移动.如果P,Q两点同时出发.
(1)经过几秒,△PCQ的面积为32cm2?
(2)若设△PCQ的面积为S,运动时间为t,请写出当t为何值时,S最大,并求出最大值;
(3)当t为何值时,以P,C,Q为顶点的三角形与△ABC相似?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读理解:
如图1,在四边形ABCD的边AB上任取一点E(点E不与点A、点B重合),分别连接ED,EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的相似点;如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的强相似点.解决问题:
(1)如图1,∠A=∠B=∠DEC=55°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;
(2)如图2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图2中画出矩形ABCD的边AB上的一个强相似点E;
拓展探究:
(3)如图3,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处.若点E恰好是四边形ABCM的边AB上的一个强相似点,试探究AB和BC的数量关系.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com