【题目】若点A(2,4)在函数y=kx﹣2的图象上,则下列各点在此函数图象上的是( )
A. (1,1) B. (﹣1,1) C. (﹣2,﹣2) D. (2,﹣2)
科目:初中数学 来源: 题型:
【题目】已知∠MON=90°,有一根长为10的木棒AB的两个端点A、B分别在射线OM,ON上滑动,∠OAB的角平分线AD交OB于点D.
(1)如图(1),若OA=6,则OB= ,OD= ;
(2)如图(2),过点B作BE⊥AD,交AD的延长线于点E,连接OE,在AB滑动的过程中,线段OE,BE有何数量关系,并说明理由;
(3)若点P是∠MON内部一点,在(1)的条件下,当△ABP是以AB为斜边的等腰直角三角形时,OP2= ;
(4)在AB滑动的过程中,△AOB面积的最大值为 .
·图(1) 图(2) 备用图
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知矩形OABC中,OA=3,AB=6,以OA、OC所在的直线为坐标轴,建立如图所示的平面直角坐标系。将矩形OABC绕点O顺时针方向旋转,得到矩形ODEF,当点B在直线DE上时,设直线DE和轴交于点P,与轴交于点Q.(1)求证:△BCQ≌△ODQ;(2)求点P的坐标;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】按图填空,并注明理由.
(1)完成正确的证明:如图(1),已知AB∥CD,求证:∠BED=∠B+∠D
证明:过E点作EF∥AB(经过直线外一点有且只有一条直线与这条直线平行)
∴∠1=()
∵AB∥CD(已知)
∴EF∥CD(如果两条直线与同一直线平行,那么它们也平行)
∴∠2=()
又∠BED=∠1+∠2
∴∠BED=∠B+∠D (等量代换).
(2)如图(2),在△ABC中,EF∥AD,∠1=∠2,∠BAC=70°.将求∠AGD的过程填写完整.
解:因为EF∥AD(已知)
所以∠2=∠3.()
又因为∠1=∠2,所以∠1=∠3.(等量代换)
所以AB∥()
所以∠BAC+=180° ().
又因为∠BAC=70°,所以∠AGD=110°.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com