【题目】如图,抛物线y=ax2+bx+1经过点(2,6),且与直线y=x+1相交于A,B两点,点A在y轴上,过点B作BC⊥x轴,垂足为点C(4,0).
(1)求抛物线的解析式;
(2)若P是直线AB上方该抛物线上的一个动点,过点P作PD⊥x轴于点D,交AB于点E,求线段PE的最大值;
(3)在(2)的条件,设PC与AB相交于点Q,当线段PC与BE相互平分时,请求出点Q的坐标.
【答案】(1)y=-x2+x+1;(2)当x=2时,PE的最大值为4;(3)点Q的坐标为(,)或(,).
【解析】
(1)利用直线解析式可求得B点坐标,再利用待定系数法可求得抛物线解析式;
(2)设出P点坐标,则可表示出E点坐标,则可表示出PE的长,利用二次函数的性质可求得PE的最大值;
(3)由条件可知四边形BCEP为平行四边形,可得BC=PE,则可求得P点坐标,利用中点坐标可求得Q点坐标.
(1)∵BC⊥x轴,垂足为点C(4,0),且点B在直线y=x+1上,
∴点B的坐标为(4,3),
∴抛物线y=ax2+bx+1经过点(2,6)和点B(4,3),
∴,解得,
∴抛物线的解析式为y=-x2+x+1;
(2)设动点P的坐标为(x,-x2+x+1),则点E的坐标为:(x,x+1),
∵PD⊥x轴于点D,且点P在x轴上,
∴PE=PD-ED=-x2+x+1-(x+1)=-x2+4x=-(x-2)2+4,
∴当x=2时,PE的最大值为4;
(3)∵PC与BE互相平分,
∴四边形BCEP为平行四边形,
∴PE=BC,
∴-x2+4x=3即x2-4x+3=0,解得x1=1,x2=3,
∵点Q分别是PC,BE的中点,且点Q在直线y=x+1
∴①当x=1时,点Q的横坐标为,点Q的坐标为(,),
②当x=3时,点Q的横坐标为,点Q的坐标为(,),
综上可知点Q的坐标为(,)或(,).
科目:初中数学 来源: 题型:
【题目】国务院办公厅在2015年3月16日发布了《中国足球发展改革总体方案》,这是中国足球史上的重大改革,为进一步普及足球知识,传播足球文化,我市某区在中小学举行了“足球在身边”知识竞赛,各类获奖学生人数的比例情况如图所示,其中获得三等奖的学生共50名,请结合图中信息,解答下列问题:
(1)获得一等奖的学生人数;
(2)在本次知识竞赛活动中,A,B,C,D四所学校表现突出,现决定从这四所学校中随机选取两所学校举行一场足球友谊赛,请用画树状图或列表的方法求恰好选到A,B两所学校的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本小题满分12分)如图,在平面直角坐标系xOy中,抛物线()与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC.
(1)直接写出点A的坐标,并求直线l的函数表达式(其中k,b用含a的式子表示);
(2)点E是直线l上方的抛物线上的动点,若△ACE的面积的最大值为,求a的值;
(3)设P是抛物线的对称轴上的一点,点Q在抛物线上,以点A,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:①c>0;②若B(﹣,y1),C(﹣,y2)为图象上的两点,则y1<y2;③2a﹣b=0;④<0,其中正确的结论是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形 ABCD 中,点 E,F 分别在 BC 和 AB 上,BE=3,AF=2,BF=4,将△ BEF 绕点 E 顺时针旋转,得到△GEH,当点 H 落在 CD 边上时,F,H 两点之间的距离为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】课本中有一道作业题:有一块三角形余料ABC,它的边BC=120mm,高AD=80mm.要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.
(1)加工成的正方形零件的边长是多少mm?
(2)如果原题中要加工的零件是一个矩形,且此矩形是由两个并排放置的正方形所组成,如图1,此时,这个矩形零件的两条边长又分别为多少?请你计算.
(3)如果原题中所要加工的零件只是一个矩形,如图2,这样,此矩形零件的两条边长就不能确定,但这个矩形面积有最大值,求达到这个最大值时矩形零件的两条边长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在某飞机场东西方向的地面l上有一长为1 km的飞机跑道MN(如图),在跑道MN的正西端14.5千米处有一观察站A.某时刻测得一架匀速直线降落的飞机位于点A的北偏西30°,且与点A相距15千米的B处;经过1分钟,又测得该飞机位于点A的北偏东60°,且与点A相距5千米的C处.
(1)该飞机航行的速度是多少千米/小时?(结果保留根号)
(2)如果该飞机不改变航向继续航行,那么飞机能否降落在跑道MN之间?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=x2﹣2x﹣3的图象与x轴交于A、B两点,与y轴交于点C,则下列说法错误的是( )
A. AB=4
B. ∠ABC=45°
C. 当x>0时,y<﹣3
D. 当x>1时,y随x的增大而增大
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com