精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC中,∠ACB=90°,点FAC延长线上,DE△ABC中位线,如果∠1=30°DE=2,则四边形AFED的周长是________

【答案】16.

【解析】

试题根据三角形的中位线平行于第三边并且等于第三边的一半可得DE=AC,从而得到CF=DE,再根据直角三角形30°角所对的直角边等于斜边的一半可得EF=2CF,利用勾股定理列式求出CE,再求出BC,然后利用勾股定理列式求出AB,从而得到AD的长度,最后根据四边形的周长的定义列式计算即可得解:

∵DE△ABC中位线,∴DE=AC.

∵CF=AC∴CF=DE=2.

∵∠1=30°∠ACB=90°∴EF=2CF=2×2=4.

由勾股定理得,.

∴BC=2CE=.

∵AC=2DE=2×2=4

.

∴AD=AB=4

四边形AFED的周长=4+4+2+4+2=16

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线,点上,点、点上,的角平分线于点,过点于点,己知,则的度数为(

A. 26°B. 32°C. 36°D. 42°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将矩形沿对角线折叠,点落到点处,于点

1)求证:

2)若,求的值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2台大收割机和5台小收割机同时工作2 h共收割小麦3.6hm2,3台大收割机和2台小收割机同时工作5 h共收割小麦8 hm2.1台大收割机和1台小收割机每小时各收割小麦多少公顷?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为4的菱形ABCD中,BD=4,E、F分别是AD、CD上的动点(包含端点),且AE+CF=4,连接BE、EF、FB.

(1)试探究BEBF的数量关系,并证明你的结论;

(2)求EF的最大值与最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为6cm的正方形ABCD中,动点P从点A出发,沿线段AB以每秒1cm的速度向点B运动;同时动点Q从点B出发,沿线段BC以每秒2cm的速度向点C运动.当点Q到达C点时,点P同时停止,设运动时间为t.(注:正方形的四边长都相等,四个角都是直角)

(1)CQ的长为______cm(用含的代数式表示);

(2)连接DQ并把DQ沿DC翻折,交BC延长线于点F.连接DPDQPQ.

①若,求t的值.

②当时,求t的值,并判断是否全等,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,∠B50°,∠C110°,∠D90°AEBCAF是∠BAD的平分线,与边BC交于点F.求∠EAF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,我们定义直线为抛物线bc为常数,梦想直线;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其梦想三角形”.

已知抛物线与其梦想直线交于AB两点A在点B的左侧,与x轴负半轴交于点C

填空:该抛物线的梦想直线的解析式为______,点A的坐标为______,点B的坐标为______;

如图,点M为线段CB上一动点,将AM所在直线为对称轴翻折,点C的对称点为N,若为该抛物线的梦想三角形,求点N的坐标;

当点E在抛物线的对称轴上运动时,在该抛物线的梦想直线上,是否存在点F,使得以点ACEF为顶点的四边形为平行四边形?若存在,请直接写出点EF的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(8分)如图:在四边形ABCD中,E是AB上的一点,△ADE和△BCE都是等边三角形,点P、Q、M、N分别为AB、BC、CD、DA的中点,四边形MNPQ什么形状?说明理由。

查看答案和解析>>

同步练习册答案