精英家教网 > 初中数学 > 题目详情

【题目】如图,已知AD是等腰△ABC底边BC上的高,sinB= ,点E在AC上,且AE:EC=2:3,则tan∠ADE=(
A.
B.
C.
D.

【答案】B
【解析】解:如图.作EF∥CD交AD于F点.
∵sinB=sinC= =
∴设AD=4x,则AC=5x,CD=3x,
= =
∴FD= x,AF= x.
= =
∴EF= x.
∴tan∠ADE= =
故选:B.
【考点精析】解答此题的关键在于理解等腰三角形的性质的相关知识,掌握等腰三角形的两个底角相等(简称:等边对等角),以及对解直角三角形的理解,了解解直角三角形的依据:①边的关系a2+b2=c2;②角的关系:A+B=90°;③边角关系:三角函数的定义.(注意:尽量避免使用中间数据和除法)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,为了测量出一垂直水平地面的某高大建筑物AB的高度,一测量人员在该建筑物附近C处,测得建筑物顶端A处的仰角大小为45°,随后沿直线BC向前走了100米后到达D处,在D处测得A处的仰角大小为30°,则建筑物AB的高度约为米. (注:不计测量人员的身高,结果按四舍五入保留整数,参考数据: ≈1.41, ≈1.73)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在矩形ABCD中,AB=4,AD=5,E为射线BC上一点,DFAEF,连结DE.

(1)当E在线段BC上时

①若DE=5,求BE的长;

②若CE=EF,求证:AD=AE;

(2)连结BF,在点E的运动过程中:

①当ABF是以AB为底的等腰三角形时,求BE的长;

②记ADF的面积为S1,记DCE的面积为S2,当BFDE时,请直接写出S1:S2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在ABCD中,AEBCCFAD,垂足分别为EFAECF分别与BD相交于点GH,联结AHCG

求证:四边形AGCH是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰直角三角形ABC中,∠ACB=90°,AC=BC=4,D是AB的中点,E,F分别是AC,BC上的点(点E不与端点A,C重合),且AE=CF,连接EF并取EF的中点O,连接DO并延长至点G,使GO=OD,连接DE,DF,GE,GF.
(1)求证:四边形EDFG是正方形;
(2)当点E在什么位置时,四边形EDFG的面积最小?并求四边形EDFG面积的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE,BF交于点G,将△BCF沿BF对折,得到△BPF,延长FP交BA延长线于点Q,下列结论正确的个数是( )
①AE=BF;②AE⊥BF;③sin∠BQP= ;④S四边形ECFG=2SBGE

A.4
B.3
C.2
D.1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“校园安全”受到全社会的广泛关注,绵阳市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了如图两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:
(1)接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为
(2)请补全条形统计图;
(3)若该中学共有学生3000人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数;
(4)若从对校园安全知识达到了“了解”程度的3个女生和2个男生中随机抽取2人参加校园安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC和△DEF,点E在BC边上,点A在DE边上,边EF和边AC相交于点G.如果AE=EC,∠AEG=∠B,那么添加下列一个条件后,仍无法判定△DEF与△ABC一定相似的是(
A. =
B. =
C. =
D. =

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】潍坊到济南的距离约为210km,小刘开着小轿车,小张开着大货车,都从潍坊去济南,小刘比小张晚出发1小时,最后两车同时到达济南,已知小轿车的速度是大货车速度的1.5倍.
(1)求小轿车和大货车的速度各是多少?(列方程解答)
(2)当小刘出发时,求小张离济南还有多远?

查看答案和解析>>

同步练习册答案