【题目】已知:如图,在Rt△ABC中,∠ACB=90,BC=6㎝,AB=10㎝.一动点M在边AC上从A向C以3㎝/s的速度匀速运动,另一动点N在边BC上同时从C向B以2㎝/s的速度匀速运动,当其中一个点到达终点时另一点也随之停止运动.设运动的时间为秒.
(1)当运动时间为多少秒时,△CMN的面积为5?
(2)当运动时间为多少秒时,以C、M、N为顶点的三角形与△ABC相似?
【答案】(1)1或;(2)或.
【解析】
(1)首先根据勾股定理求得AC的长,然后用x表示出线段MC和NC,利用三角形的面积计算公式列出方程求得时间即可;
(2)分△MCN∽△ACB时和△MCN∽△BCA时两种情况利用相似三角形的性质列出方程求得时间即可.
∵Rt△ABC中,∠ACB=90°,BC=6cm,AB=10cm,
∴AC==8,
∵动点M在边AC上从A向C以3cm/s的速度匀速运动,另一动点N在边BC上同时从C向B以2cm/s的速度匀速运动,运动时间为x秒,
∴AM=3xcm,CN=2xcm,
∴CM=(8-3x)cm,
(1)△CMN的面积为5cm2可得:×2x(8-3x)=5,
解得:x=1或x=,
答当运动时间x为1或秒时,△CMN的面积为5cm2;
(2)当△MCN∽△ACB时,,
即:,
解得:x=;
当△MCN∽△BCA时,,
即:,
解得:x=,
答:当运动时间x为或秒时,以C、M、N为顶点的三角形与△ABC相似.
科目:初中数学 来源: 题型:
【题目】某校计划一次性购买排球和篮球,每个篮球的价格比排球贵30元;购买2个排球和3个篮球共需340元.
(1)求每个排球和篮球的价格:
(2)若该校一次性购买排球和篮球共60个,总费用不超过3800元,且购买排球的个数少于39个.设排球的个数为m,总费用为y元.
①求y关于m的函数关系式,并求m可取的所有值;
②在学校按怎样的方案购买时,费用最低?最低费用为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一次函数与反比例函数的图象相交于A(﹣1,4),B(2,n)两点,直线AB交x轴于点D.
(1)求一次函数与反比例函数的表达式;
(2)过点B作BC⊥y轴,垂足为C,连接AC交x轴于点E,求△AED的面积S.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y1=k1x+2与反比例函数y2=的图象交于点A(4,m)和B(﹣8,﹣2),与y轴交于点C.
(1)k1= ,k2= ;
(2)根据函数图象可知,当y1>y2时,x的取值范围是 ;
(3)过点A作AD⊥x轴于点D,点P是反比例函数在第一象限的图象上一点.设直线OP与线段AD交于点E,当S四边形ODAC:S△ODE=3:1时,求直线OP的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰三角形PAD中,PA=PD,以AB为直径的⊙O经过点P,点C是⊙O上一点,连接AC,PC,PC交AB于点E,已知∠ACP=60°.
(1)求证:PD是⊙O的切线;
(2)连接OP,PB,BC,OC,若⊙O的直径是4,则:
①当DE= ,四边形APBC是矩形;
②当DE= ,四边形OPBC是菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数关系.
(1)试求y与x之间的函数关系式;
(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知…是轴上的点,且…,分别过点…作轴的垂线交反比例函数的图象于点…,过点作于点,过点作于点……记的面积为,的面积为……的面积为,则…等于_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与探究
如图,抛物线经过点A(-2,0),B(4,0)两点,与轴交于点C,点D是抛物线上一个动点,设点D的横坐标为.连接AC,BC,DB,DC,
(1)求抛物线的函数表达式;
(2)△BCD的面积等于△AOC的面积的时,求的值;
(3)在(2)的条件下,若点M是轴上的一个动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形,若存在,请直接写出点M的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(10分)如图,在平面直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴交于点M.
(1)求此抛物线的解析式和对称轴;
(2)在此抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)连接AC,在直线AC下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com