【题目】如图,抛物线y=x2+bx+c过点A(﹣4,﹣3),与y轴交于点B,对称轴是x=﹣3,请解答下列问题:
(1)求抛物线的解析式.
(2)若和x轴平行的直线与抛物线交于C,D两点,点C在对称轴左侧,且CD=8,求△BCD的面积.
【答案】(1)y=x2+6x+5;(2)28
【解析】(1)由对称轴公式可求出b值,再将点A的坐标及b值代入到抛物线中求出c,即可得到抛物线的解析;(2)通过C点坐标、对称轴及点B的坐标求出CD及CD上的高即可求出△BCD的面积.
解:(1)把点A(﹣4,﹣3)代入y=x2+bx+c得:
16﹣4b+c=﹣3,
c﹣4b=﹣19,
∵对称轴是x=﹣3,
∴﹣=﹣3,
∴b=6,
∴c=5,
∴抛物线的解析式是y=x2+6x+5
(2)∵CD∥x轴,
∴点C与点D关于x=﹣3对称,
∵点C在对称轴左侧,且CD=8,
∴点C的横坐标为﹣7,
∴点C的纵坐标为(﹣7)2+6×(﹣7)+5=12,
∵点B的坐标为(0,5),
∴△BCD中CD边上的高为12﹣5=7,
∴△BCD的面积=×8×7=28.
科目:初中数学 来源: 题型:
【题目】如图,A,O,B在同一条直线上,∠AOD=∠BOD=∠EOC=90°,∠BOC∶∠AOE=3∶1.
(1)求∠COD的度数.
(2)图中有哪几对角互为余角?
(3)图中有哪几对角互为补角?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】根据某地实验测得的数据表明,高度每增加1km,气温大约下降3℃,已知该地地面温度为21℃.
(1)高空某处高度是6km,求此处的温度是多少;
(2)高空某处温度为﹣24℃,求此处的高度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,设慢车离乙地为y1(km),快车离乙地的距离为y2(km),慢车行驶时间为x(h),两车之间的距离为s(km),y1 ,y2与x的函数关系图像如图①所示,s与x的函数关系图如图②所示:
图① 图②
(1)图中的a= ,b= .
(2)求s关于x的函数关系式.
(3)甲、乙两地间有E、F两个加油站,相距200km,若慢车进入加油站E时,快车恰好进入加油站F,请直接写出加油站E到甲地的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,E为CD的中点,H为BE上的一点, =3,连接CH并延长交AB于点G,连接GE并延长交AD的延长线于点F.
(1)求证: ;
(2)若∠CGF=90°,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,方格纸中每个小正方形的边长都是1个单位长度,△ABC在平面直角坐标系中的位置如图所示.
(1)将△ABC向上平移3个单位后,得到△A1B1C1,请画出△A1B1C1,并直接写出点A1的坐标.
(2)将△ABC绕点O顺时针旋转90°,请画出旋转后的△A2B2C2,并求点B所经过的路径长(结果保留π)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图1,直线与x轴、y轴分别交于点A、C两点,点B的横坐标为2.
图1 图2
(1)求A、C两点的坐标和抛物线的函数关系式;
(2)点D是直线AC上方抛物线上任意一点,P为线段AC上一点,且S△PCD=2S△PAD ,求点P的坐标;
(3)如图2,另有一条直线y=-x与直线AC交于点M,N为线段OA上一点,∠AMN=∠AOM.点Q为x轴负半轴上一点,且点Q到直线MN和直线MO的距离相等,求点Q的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com