【题目】在平面直角坐标系中,点到直线的距离即为点到直线的垂线段的长.
(1)如图1,取点M(1,0),则点M到直线l:y=x﹣1的距离为多少?
(2)如图2,点P是反比例函数y=在第一象限上的一个点,过点P分别作PM⊥x轴,作PN⊥y轴,记P到直线MN的距离为d0,问是否存在点P,使d0=?若存在,求出点P的坐标,若不存在,请说明理由.
(3)如图3,若直线y=kx+m与抛物线y=x2﹣4x相交于x轴上方两点A、B(A在B的左边).且∠AOB=90°,求点P(2,0)到直线y=kx+m的距离最大时,直线y=kx+m的解析式.
【答案】(1);(2)点P(,2)或(2,);(3)y=﹣2x+9
【解析】
(1)如图1,设直线l:y=x﹣1与x轴,y轴的交点为点A,点B,过点M作ME⊥AB,先求出点A,点B坐标,可得OA=2,OB=1,AM=1,由勾股定理可求AB长,由锐角三角函数可求解;
(2)设点P(a,),用参数a表示MN的长,由面积关系可求a的值,即可求点P坐标;
(3)如图3,过点A作AC⊥x轴于点C,过点B作BD⊥y轴于点D,设点A(a,a2﹣4a),点B(b,b2﹣4b),通过证明△AOC∽△BOD,可得ab﹣4(a+b)+17=0,由根与系数关系可求a+b=k+4,ab=﹣m,可得y=kx+1﹣4k=k(x﹣4)+1,可得直线y=k(x﹣4)+1过定点N(4,1),则当PN⊥直线y=kx+m时,点P到直线y=kx+m的距离最大,由待定系数法可求直线PN的解析式,可求k,m的值,即可求解.
解:(1)如图1,设直线l:y=x﹣1与x轴,y轴的交点为点A,点B,过点M作ME⊥AB,
∵直线l:y=x﹣1与x轴,y轴的交点为点A,点B,
∴点A(2,0),点B(0,﹣1),且点M(1,0),
∴AO=2,BO=1,AM=OM=1,
∴AB===,
∵tan∠OAB=tan∠MAE=,
∴,
∴ME=,
∴点M到直线l:y=x﹣1的距离为;
(2)设点P(a,),(a>0)
∴OM=a,ON=,
∴MN==,
∵PM⊥x轴,PN⊥y轴,∠MON=90°,
∴四边形PMON是矩形,
∴S△PMN=S矩形PMON=2,
∴×MN×d0=2,
∴×=4,
∴a4﹣10a2+16=0,
∴a1=2,a2=﹣2(舍去),a3=2,a4=﹣2(舍去),
∴点P(,2)或(2,),
(3)如图3,过点A作AC⊥x轴于点C,过点B作BD⊥y轴于点D,
设点A(a,a2﹣4a),点B(b,b2﹣4b),
∵∠AOB=90°,
∴∠AOC+∠BOD=90°,且∠AOC+∠CAO=90°,
∴∠BOD=∠CAO,且∠ACO=∠BDO,
∴△AOC∽△BOD,
∴,
∴
∴ab﹣4(a+b)+17=0,
∵直线y=kx+m与抛物线y=x2﹣4x相交于x轴上方两点A、B,
∴a,b是方程kx+m=x2﹣4x的两根,
∴a+b=k+4,ab=﹣m,
∴﹣m﹣4(k+4)+17=0,
∴m=1﹣4k,
∴y=kx+1﹣4k=k(x﹣4)+1,
∴直线y=k(x﹣4)+1过定点N(4,1),
∴当PN⊥直线y=kx+m时,点P到直线y=kx+m的距离最大,
设直线PN的解析式为y=cx+d,
∴
解得
∴直线PN的解析式为y=x﹣1,
∴k=﹣2,
∴m=1﹣4×(﹣2)=9,
∴直线y=kx+m的解析式为y=﹣2x+9.
科目:初中数学 来源: 题型:
【题目】(1)如图①,已知正方形ABCD的边长是4,M在DC上,M是CD的中点,点P是AC边上的一动点,则当DP+MP的值最小时,在备用图(答题卷上)中用尺规作出点P的位置,并直接写出DP的长是?
(2)如图②,已知正方形ABCD的边长是4,点M是DC上的一个动点,连结AM,作BP⊥AM于点P,连结DP,当DP最小时,在备用图(答题卷上)中用尺规作出点P的位置,并直接写出DP的长是?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△P1OA1,△P2A1A2,△P3A2A3……都是等腰Rt△,直角顶点P1(3,3),P2,P3……,均在直线y=﹣x+4上,设△P1OA1,△P2A1A2,△P3A2A3……的面积分别为S1,S2,S3……则S2019的值为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知∠ACB=∠DBC,添加以下条件,不能判定△ABC≌△DCB的是( )
A.∠ABC=∠DCBB.∠ABD=∠DCA
C.AC=DBD.AB=DC
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=6,BC=6,动点P从点A出发,以每秒 个单位长度的速度沿线段AD运动,动点Q从点D出发,以每秒2个单位长度的速度沿折线段D﹣O﹣C运动,已知P、Q同时开始移动,当动点P到达D点时,P、Q同时停止运动.设运动时间为t秒.
(1)当t=1秒时,求动点P、Q之间的距离;
(2)若动点P、Q之间的距离为4个单位长度,求t的值;
(3)若线段PQ的中点为M,在整个运动过程中;直接写出点M运动路径的长度为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC,连接OB,点D为OB的中点,点E是线段AB上的动点,连接DE,作DF⊥DE,交OA于点F,连接EF.已知点E从A点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.
(1)如图1,当t=3时,求DF的长.
(2)如图2,当点E在线段AB上移动的过程中,的大小是否发生变化?如果变化,请说明理由;如果不变,请求出的值.
(3)连接AD,当AD将△DEF分成的两部分的面积之比为1:2时,求相应的t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线与函数的图象交于,两点,且点的坐标为.
(1)求的值;
(2)已知点,过点作平行于轴的直线,交直线于点,交函数的图象于点.
①当时,求线段的长;
②若,结合函数的图象,直接写出的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:
①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1,
其中正确的是( )
A. ①②③ B. ①③④ C. ①③⑤ D. ②④⑤
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com