精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,P1OA1P2A1A2P3A2A3……都是等腰Rt,直角顶点P1(33)P2P3……,均在直线y=﹣x+4上,设P1OA1P2A1A2P3A2A3……的面积分别为S1S2S3……则S2019的值为(

A.B.C.D.

【答案】A

【解析】

分别过点P1P2P3x轴的垂线段,先根据等腰直角三角形的性质求得前三个等腰直角三角形的底边和底边上的高,继而求得三角形的面积,得出面积的规律即可得出答案.

解:如图,分别过点P1P2P3x轴的垂线段,垂足分别为点CDE

P133),且P1OA1是等腰直角三角形,

OCCA1P1C3

A1Da,则P2Da

OD6+a

∴点P2坐标为(6+aa),

将点P2坐标代入y=﹣x+4,得:﹣6+a+4a

解得:a

A1A22a3P2D

同理求得P3EA2A3

S1×6×39S2×3×S3××……

S2019

故选:A

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB是O的直径,弦BC=2cm,F是弦BC的中点,ABC=60°.若动点E以2cm/s的速度从A点出发沿着ABA方向运动,设运动时间为t(s)(0≤t<3),连接EF,当t为_____s时,BEF是直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系内,己知,直线关于的对称点分别为,请利用直尺(无刻度)和圆规按下列要求作图.

l)当重合时,请在图中画出点位置,并求出的值;

2)当都落在轴上时,请在图2中画出直线,并求出的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明研究了这样一道几何题:如图1,在△ABC中,把ABA顺时针旋转α (0°α180°)得到AB,把AC绕点A逆时针旋转β得到AC,连接BC.当α+β=180°时,请问△ABCBC上的中线ADBC的数量关系是什么?以下是他的研究过程:

特例验证:

(1)①如图2,当△ABC为等边三角形时,ADBC的数量关系为AD=   BC

②如图3,当∠BAC=90°BC=8时,则AD长为   

猜想论证:

(2)在图1中,当△ABC为任意三角形时,猜想ADBC的数量关系,并给予证明.

拓展应用

(3)如图4,在四边形ABCD,∠C=90°,∠A+B=120°BC=12CD=6DA=6,在四边形内部是否存在点P,使△PDC与△PAB之间满足小明探究的问题中的边角关系?若存在,请画出点P的位置(保留作图痕迹,不需要说明)并直接写出△PDC的边DC上的中线PQ的长度;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数y=ax2+bx+c图象如图所示,则下列结论中正确的个数(

① abc0② a-bc0③ a+b+c0④ 2c =3b

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在如图的正方形网格中,每一个小正方形的边长均为1,已知格点ABC的顶点AC的坐标分别是(20)(33)

1)请在图中的网格平面内建立平面直角坐标系.

2)以点(12)为位似中心,相似比为2,将ABC放大为原来的2倍,得到A1B1C1,画出A1B1C1,使它与ABC在位似中心的异侧,并写出B1点坐标为   

3)线段BC与线段B1C1的关系为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为弘扬中华传统文化,某校开展双剧进课堂的活动,该校童威随机抽取部分学生,按四个类别:表示很喜欢表示喜欢表示一般表示不喜欢,调查他们对汉剧的喜爱情况,将结果绘制成如下两幅不完整的统计图,根据图中提供的信息,解决下列问题:

1)这次共抽取_________名学生进行统计调查,扇形统计图中,类所对应的扇形圆心角的大小为__________

2)将条形统计图补充完整

3)该校共有1500名学生,估计该校表示喜欢类的学生大约有多少人?

各类学生人数条形统计图各类学生人数扇形统计图

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点到直线的距离即为点到直线的垂线段的长.

1)如图1,取点M10),则点M到直线lyx1的距离为多少?

2)如图2,点P是反比例函数y在第一象限上的一个点,过点P分别作PMx轴,作PNy轴,记P到直线MN的距离为d0,问是否存在点P,使d0?若存在,求出点P的坐标,若不存在,请说明理由.

3)如图3,若直线ykx+m与抛物线yx24x相交于x轴上方两点ABAB的左边).且∠AOB90°,求点P20)到直线ykx+m的距离最大时,直线ykx+m的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】请阅读下列材料,并完成相应的任务.

梅涅劳斯(Menelaus)是公元一世纪时的希腊数学家兼天文学家,著有几何学和三角学方面的许多书籍.梅涅劳斯发现,三角形各边(或其延长线)被一条不过任何一个顶点也不与任何一条边平行的直线所截,这条直线可能与三角形的两条边相交(一定还会与一条边的延长线相交),也可能与三条边都不相交(与三条边的延长线都相交).他进行了深入研究并证明了著名的梅涅劳斯定理(简称梅氏定理):

DEF依次是△ABC的三边ABBCCA或其延长线上的点,且这三点共线,则满足

这个定理的证明步骤如下:

情况:如图1,直线DE交△ABC的边AB于点D,交边AC于点F,交边BC的延长线与点E

过点CCMDEAB于点M,则(依据),

BEADFCBDAFEC,即

情况:如图2,直线DE分别交△ABC的边BABCCA的延长线于点DEF

1)情况中的依据指:   

2)请你根据情况的证明思路完成情况的证明;

3)如图3DF分别是△ABC的边ABAC上的点,且AD:DBCF:FA2:3,连接DF并延长,交BC的延长线于点E,那么BE:CE   

查看答案和解析>>

同步练习册答案