精英家教网 > 初中数学 > 题目详情
1.如图,AF是△ABC的高,点D、E分别在AB、AC上,且DE∥BC,DE交AF于点G.设AD=10,AB=30,AC=24,GF=12.
(1)求AE的长;
(2)求点A到DE的距离.

分析 (1)由DE∥BC,得到△ADE∽△ABC,根据相似三角形的性质得到$\frac{AD}{AB}=\frac{AE}{AC}$,代入数据即可得到结论;
(2)根据平行线的性质得到得到AF⊥DE,根据DE∥BC,推出△ADG∽△ABF,根据相似三角形的性质得到$\frac{AD}{AB}=\frac{AG}{AF}$,代入数据即可得到结论.

解答 解:(1)∵DE∥BC,
∴△ADE∽△ABC,
∴$\frac{AD}{AB}=\frac{AE}{AC}$,
∵AD=10,AB=30,AC=24,
∴$\frac{10}{30}=\frac{AE}{24}$,
∴AE=8;

(2)∵AF是△ABC的高,
∴AF⊥BC,
∵DE∥BC,
∴AF⊥DE,
∵DE∥BC,
∴△ADG∽△ABF,
∴$\frac{AD}{AB}=\frac{AG}{AF}$,
∵GF=12,
∴$\frac{10}{30}=\frac{AG}{AG+12}$,
∴AG=6,
∴点A到DE的距离是6.

点评 本题考查了相似三角形的判定和性质,平行线的性质,熟练掌握相似三角形的判定和性质是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

11.在Rt△ABC中,∠ACB=90°,点D是斜边AB上的中点,AC=6cm,BC=4cm,一动点P从点A出发,沿A→C→B的路线以1cm/s的速度移动.设△APD的面积为y(cm2),则y关于点P的运动时间x(s)的函数图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.(1)计算:(3x-y)2-(2x+y)2+5x(y-x)
(2)解方程:$\frac{x}{x-2}-1=\frac{8}{{x}^{2}-4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.已知等腰△APP1、△BPP2中,AP=AP1,BP=BP2,A、P、B在同一条直线上,且∠A=∠B=α.
(1)如图①,当α=90°时,求∠P1PP2的度数;
(2)如图②,当点P2在AP1的延长线上时,∠P2PP1的度数(用含α的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,点P是∠AOB的边OB上的一点.
(1)过点M画OB的平行线MN;
(2)过点P画OA的垂线,垂足为H;
(3)过点P画OB的垂线,交OA于点C:
则线段PH的长度是点P到AO的距离,PC是点C到直线OB的距离,因为直线外一点到直线上各点连接的所有线段中,垂线段最短,所以线段PC、PH、OC这三条线段大小关系是PH<PC<OC.(用“<”号连接).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.-(+2)等于(  )
A.-2B.2C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,EF⊥BC,AD⊥BC,∠1=∠2,∠BAC=80°.求∠AGD的度数.
请将求∠AGD度数的过程填写完整.
解:因为EF⊥BC,AD⊥BC,
所以∠BFE=90°,∠BDA=90°,理由是垂直的定义,
即∠BFE=∠BDA,所以EF∥AD,理由是同位角相等,两直线平行,
所以∠2=∠3,理由是两直线平行,同位角相等.
因为∠1=∠2,所以∠1=∠3,
所以AB∥DG,理由是内错角相等,两直线平行,
所以∠BAC+∠AGD=180°,理由是两直线平行,同旁内角互补.
又因为∠BAC=80°,所以∠AGD=100°.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.下列方程是一元二次方程的是(  )
A.x2-6x+2B.2x2-y+1=0C.5x2=0D.$\frac{1}{{x}^{2}}$+x=2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.为了给草坪喷水,安装了自动旋转喷水器,如图所示.设直线AD所在位置为地平面,喷水管AB高出地平面1.5m,在B处有一个自动旋转的喷水头,一瞬间喷出的水流呈抛物线状.喷头B与水流最高点C的连线与地平面成45°的角,水流的最高点C离地平面3.5m,水流的落地点为D.在建立如图所示的直角坐标系中:
(1)求抛物线的函数解析式;
(2)求水流的落地点D到A点的距离.

查看答案和解析>>

同步练习册答案