精英家教网 > 初中数学 > 题目详情
14.如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AB=10,EF=2,求AH的长.

分析 根据面积的差得出a+b的值,再利用a-b=2,解得a,b的值代入即可.

解答 解:∵AB=10,EF=2,
∴大正方形的面积是100,小正方形的面积是4,
∴四个直角三角形面积和为100-4=96,
设AE=a,DE=b,则4×$\frac{1}{2}$ab=96,
∴2ab=96,a2+b2=100,
∴(a+b)2=a2+b2+2ab=100+96=196,
∴a+b=14,
∵a-b=2,
解得:a=8,b=6,
∴AE=8,DE=6,
∴AH=8-2=6.

点评 此题考查勾股定理的证明,关键是应用直角三角形中勾股定理的运用解得ab的值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.人类的血型一般可分为A,B,AB,O型四种,宁波市中心血战2015年共有8万人无偿献血,血战统计人员由电脑随机选出20人,血型分别是:
O,A,O,B,O,A,A,AB,A,O,O,B,AB,B,O,A,O,B,O,A.
(1)请设计统计表分类统计这20人各类血型人数;
(2)若每位献血者平均献血200毫升,一年中宁波市各医院O型血用血量约为6×106毫米,请你估计2015年这8万人所献的O型血是否够用?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.已知a=$\frac{1}{2+\sqrt{3}}$,求$\frac{{a}^{2}-a-6}{a+2}$+$\frac{\sqrt{{a}^{2}-2a+1}}{{a}^{2}-a}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.先化简,再求值:($\frac{a-1}{a}$-$\frac{a-2}{a+1}$)÷$\frac{2{a}^{2}-a}{{a}^{2}+2a+1}$.其中a满足等式2a2-3a-3=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,在平面直角坐标系中,反比例函数y=$\frac{k}{x}$与一次函数y=-x+b交于点A(1,6-k),B(m,1).
(1)求k和b的值;
(2)当x>0时,直接写出$\frac{k}{x}$>-x+b的解集;
(3)求△AOB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.现给出代数式(a+b)(a-b)+(a-3b)2-8b2
(1)试将这个代数式进行化简;
(2)当a=-1,b=3时,试求这个代数式的值;
(3)将这个代数式除以单项式-$\frac{1}{2}$a,所得的商是整式吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,△ABC是⊙O的内接三角形,BT是⊙O的切线,P是线段AB上一点,经过P作BC的平行线与BT交于E点,与AC交于F点.
(1)求证:PE•PF=PA•PB;
(2)若AB=4$\sqrt{2}$,cos∠EBA=$\frac{1}{3}$,求⊙O的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,点P是等腰Rt△ABC底边BC上一点,过点P作BA、AC的垂线,垂足为E、F,设点D为BC中点,求证:△DEF是等腰直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.平面直角坐标系中,有A、B、C三点,其中A为原点,点B和点C的坐标分别为(5,0)和(1,2).
(1)证明:△ABC为Rt△.
(2)请你在直角坐标系中找一点D,使得△ABC与△ABD相似,写出所有满足条件的点D的坐标,并在同一坐标系中画出所有符合要求的三角形.
(3)在第(2)题所作的图中,连接任意两个直角三角形(包括△ABC)的直角顶点均可得到一条线段,在连接两点所得的所有线段中任取一条线段,求取到长度为无理数的线段的概率.

查看答案和解析>>

同步练习册答案