精英家教网 > 初中数学 > 题目详情

【题目】某城市规定:出租车起步价允许行驶的最远路程为3千米,超过3千米的部分按每千米另行收费,甲说:“我乘这种出租车走了9千米,付了15元”:乙说:“我乘这种出租车走了25千米,付了39元”请你算一算这种出租车的起步价是多少元?超过3千米后,每千米的车费是多少元?

【答案】这种出租车的起步价是6元,超过3千米后,每千米的车费是1.5元.

【解析】

设这种出租车的起步价是x元,超过3千米后,每千米的车费是y元,根据乘车9千米,需付15元;乘车25千米,需付39,即可得出关于xy的二元一次方程组,解之即可得出结论.

设这种出租车的起步价是x元,超过3千米后,每千米的车费是y元,

根据题意得:

解得:

答:这种出租车的起步价是6元,超过3千米后,每千米的车费是1.5元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,ABC的角平分线CDBE相交于F,∠A90°EGBC,且CGEGG,下列结论:①∠CEG2DCB;②∠ADC=∠GCD;③CA平分∠BCG;④∠DFBCGE.其中正确的结论是( )

A. ②③B. ①②④C. ①③④D. ①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知MB=ND,MBA=NDC,下列条件中不能判定ABMCDN的是(

A. M=N B. AM=CN C. AB=CD D. AMCN

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板 (∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OMOC都在直线AB的上方,将如图中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周。

(1)几秒后ONOC重合?

(2)如图,经过t秒后,MNAB,求此时t的值。

(3)若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,那么经过多长时间OCOM重合?请画图并说明理由。

4)在(3)的条件下,求经过多长时间OC平分∠MOB?请画图并说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△PQR在直角坐标系中的位置如图所示:

(1) 求出△PQR的面积;

(2) 画出△P′Q′R′,使△P′Q′R′△PQR关于y轴对称,写出点P′Q′R′的坐标;

(3)连接PP′QQ′,判断四边形QQ′P′P的形状,求出四边形QQ′P′P的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=ax2+bx+1经过A(﹣1,0),B(1,1)两点.

(1)求该抛物线的解析式;
(2)阅读理解:
在同一平面直角坐标系中,直线l1:y=k1x+b1(k1 , b1为常数,且k1≠0),直线l2:y=k2x+b2(k2 , b2为常数,且k2≠0),若l1⊥l2 , 则k1k2=﹣1.
解决问题:
①若直线y=3x﹣1与直线y=mx+2互相垂直,求m的值;
②抛物线上是否存在点P,使得△PAB是以AB为直角边的直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)M是抛物线上一动点,且在直线AB的上方(不与A,B重合),求点M到直线AB的距离的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O中,直径CD⊥弦AB于E,AM⊥BC于M,交CD于N,连AD.

(1)求证:AD=AN;
(2)若AB=4 ,ON=1,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AOB内部有三条射线,OE平分AODOC平分BOD

1)若AOB=90°,求EOC的度数;

2)若AOB,求EOC的度数;

3)如果将题中“平分”的条件改为EOA=AODDOC=DOBDOEDOC=43AOB=90°,求EOC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校为了增强学生体质,决定开设以下体育课外活动项目:A篮球、B乒乓球、C跳绳、D踢毽子,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:

(1)这次被调查的学生共有人;
(2)请你将条形统计图补充完成;
(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).

查看答案和解析>>

同步练习册答案