精英家教网 > 初中数学 > 题目详情

【题目】如图,矩形ABCD中,AB12,点EAD上的一点,AE6BE的垂直平分线交BC的延长线于点F,连接EFCD于点G.若GCD的中点,则BC的长是__________

【答案】10.5

【解析】

利用ASA定理证明△EDG≌△FCG,从而求得DE=CFEG=GF=,根据矩形的性质,设BC=x,DE=x-6DG=6BF=2x-6,根据垂直平分线的性质求得EG=,然后根据勾股定理列方程求解即可.

解:在矩形ABCD中,AD=BCAB=CD=12,∠D=DCF=90°

GCD中点,∴DG=CG

又∵∠EGD=FGC

∴△EDG≌△FCG

DE=CFEG=GF=

BC=x,DE=AD-AE=BC-AE=x-6DG=CG==6BF=BC+CF=BC+DE=2x-6

又∵BE的垂直平分线交BC的延长线于点F

EG=GF=

∴在RtEDG中,

解得:x=10.5

BC的长是10.5

故答案为:10.5

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,BC6cm,点E从点D出发沿DA边运动到点A,点F从点B出发沿BC边向点C运动,点E的运动速度为2cm/s,点F的运动速度为lcm/s,它们同时出发,设运动的时间为t秒,当t为何值时,EFAB

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场购进一批单价为4/件的日用品。若按每件5元的价格出售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件;假定每月的销售件数y(万件)与价格x(元/件)之间满足一次函数关系.

1试求yx的函数关系式;

2当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,王老师站在湖边度假村的景点A处,观察到一只水鸟由岸边D处飞向湖中小岛C处,点ADC所在水平面的距离AB15米,观测水鸟在点D和点C处时的俯角分别为53°11°,求CD两点之间距离.(精确到0.1.参考数据sin53°≈0.80cos53°≈0.60tan53°≈1.33sin11°≈0.19cos11°≈0.98tan11°≈0.19

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某飞机于空中探测某座山的高度,在点A处飞机的飞行高度是AF=3700米,从飞机上观测山顶目标C的俯角是45°,飞机继续以相同的高度飞行300米到B处,此时观测目标C的俯角是50°,求这座山的高度CD.(参考数据:sin50°≈0.77cos50°≈0.64tan50°≈1.20).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】国家规定“中小学生每天在校体育活动时间不低于1小时”.为此,某市就“每天在校体育活动时间”的问题随机抽样调查了321名初中学生.根据调查结果将学生每天在校体育活动时间t(小时)分成四组,并绘制了统计图(部分).

组:组:组:组:

请根据上述信息解答下列问题:

1组的人数是  

2)本次调查数据的中位数落在  组内;

3)若该市约有12840名初中学生,请你估算其中达到国家规定体育活动时间的人数大约有多少.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在菱形ABCD中,∠BAD60°

(1) 如图1,点E为线段AB的中点,连接DECE.若AB4,求线段EC的长

(2) 如图2M为线段AC上一点(不与AC重合),以AM为边向上构造等边三角形AMN,线段MNAD交于点G,连接NCDMQ为线段NC的中点,连接DQMQ,判断DMDQ的数量关系,并证明你的结论

(3) (2)的条件下,若AC,请你直接写出DMCN的最小值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,AB=AC,BAC=α,点P是△ABC内一点,且.连接PB,试探究PAPBPC满足的等量关系.

图1 图2

(1)当α=60°时ABP绕点A逆时针旋转60°得到,连接如图1所示

可以证得是等边三角形,再由可得APC的大小为 度,进而得到是直角三角形,这样可以得到PA,PB,PC满足的等量关系为

(2)如图2,当α=120°时,请参考(1)中的方法,探究PA,PB,PC满足的等量关系,并给出证明

(3)PA,PB,PC满足的等量关系为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,已知点A02),B40),C43)三点.

1)建立平面直角坐标系并描出ABC三点

2)求ABC的面积;

3)如果在第二象限内有一点Pm1),且四边形ABOP的面积是ABC的面积的两倍;求满足条件的P点坐标.

查看答案和解析>>

同步练习册答案