精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系中,已知点A02),B40),C43)三点.

1)建立平面直角坐标系并描出ABC三点

2)求ABC的面积;

3)如果在第二象限内有一点Pm1),且四边形ABOP的面积是ABC的面积的两倍;求满足条件的P点坐标.

【答案】1)见解析;(26;(3P-8,1

【解析】

1)建立平面直角坐标系,根据各点坐标描出ABC三点即可;
2)由点的坐标得出BC=3,即可求出ABC的面积;
3)求出OA=2OB=4,由S四边形ABOP=SAOB+SAOP和已知条件得出方程,解方程即可.

解:(1)如图所示:

2)∵B40),C43),
BC=3

3)如图,

A02)(40),
OA=2OB=4
S四边形ABOP=SAOB+SAOP

又∵S四边形ABOP=2SABC=12
4-m=12
解得:m=-8
P-81).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB12,点EAD上的一点,AE6BE的垂直平分线交BC的延长线于点F,连接EFCD于点G.若GCD的中点,则BC的长是__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知线段AB=2,点P是线段AB上一点,分别以APBP为边作两个正方形.

1)如果APx,求两个正方形的面积之和S

2)当点PAB的中点时,求两个正方形的面积之和S1

3)当点P不是AB的中点时,比较(1)中的S与(2)中S1的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小左同学想利用影长测量学校旗杆的高度,如图,她在某一时刻立一长度为1米的标杆,测得其影长为米,同时旗杆投影的一部分在地上,另一部分在某一建筑物的墙上,测得旗杆与建筑物的距离为10米,旗杆在墙上的影高为2米,请帮小左同学算出学校旗杆的高度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)先化简,再求值5x2-[2xy-3xy+2+4x2],其中x=-2y=
2)若(2a-12+|2a+b|=0,且|c-1|=2,求ca3-b)的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】《庄子·天下》:“一尺之棰,日取其半,万世不竭.”意思是说:一尺长的木棍,每天截掉一半,永远也截不完.我国智慧的古代人在两千多年前就有了数学极限思想,今天我们运用此数学思想研究下列问题.

(规律探索)

(1)如图1所示的是边长为1的正方形,将它剪掉一半,则S阴影11__________

如图2,在图1的基础上,将阴影部分再裁剪掉—半,则S阴影21()2_______

同种操作,如图3S阴影31()2()3__________

如图4S阴影41()2()3()4___________

……

若同种地操作n次,则S阴影n1()2()3-…-()n_________.

(规律归纳)

(2)直接写出+…+的化简结果:_________.

(规律应用)

(3)直接写出算式+…+的值:__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD和直角△ABE,∠AEB=90°,将△ABE绕点O旋转180°得到△CDF

(1) 在图中画出点O和△CDF,并简要说明作图过程

(2) 若AE=12,AB=13,求EF的长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题情境:如图1,ABCD ,.求度数.

小明的思路是:如图2,过PPEAB,通过平行线性质,可得 _______.

问题迁移:如图3,ADBC,点P在射线OM上运动,

(1)当点PAB两点之间运动时, 之间有何数量关系?请说明理由.

(2)如果点PAB两点外侧运动时(点P与点ABO三点不重合),请你直接写出之间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算

1

2)(+6-+12++9.6)-+7.6)

3×

4)(×(60 )

5)(2)-(+10)+(-8)-(+3)

6)﹣14﹣(10.5××[1﹣(﹣22]

查看答案和解析>>

同步练习册答案