【题目】甲、乙两家商店出售同样牌子和规格的羽毛球拍和羽毛球,每副球拍定价300元,每盒羽毛球定价40元,为庆祝五一节,两家商店开展促销活动如下:
甲商店:所有商品9折优惠;
乙商店:每买1副球拍赠送1盒羽毛球.
某校羽毛球队需要购买副球拍和盒羽毛球.
(1)按上述的促销方式,该校羽毛球队在甲、乙两家商店各应花费多少元?试用含的代数式表示;
(2)当时,试判断分别到甲、乙两家商店购买球拍和羽毛球,哪家便宜?
(3)当满足什么关系时,到甲、乙两家商店购买球拍和羽毛球的费用相同?
【答案】(1)在甲商店购买的费用为(270a+36b)元,在乙商店购买的费用为(260a+40b)元;(2)到乙商店购买球拍和羽毛球便宜;(3)当a、b满足5a=2b关系时,到甲、乙两家商店购买球拍和羽毛球的费用相同.
【解析】
(1)根据题意可以用代数式分别表示出校羽毛球队在甲、乙两家商店各应花费的钱数;
(2)根据(1)中代数式,将a=10,b=20代入即可解答本题;
(3)根据题意可以得到相应的等式,从而可以得到a、b满足什么条件到甲、乙两家商店购买球拍和羽毛球的费用相同.
(1)由题意可得,
在甲商店购买的费用为:(300a+40b)×0.9=(270a+36b)(元),
在乙商店购买的费用为:300a+40(b-a)=(260a+40b)(元);
(2)当a=10,b=20时,
在甲商店购买的费用为:270×10+36×20=3420(元),
在乙商店购买的费用为:260×10+40×20=3400(元),
∵3420>3400,
∴当a=10,b=25时,到乙商店购买球拍和羽毛球便宜;
(3)由题意可得,
(270a+36b)-(260a+40b)=0,
解得,5a=2b,
答:当a、b满足5a=2b关系时,到甲、乙两家商店购买球拍和羽毛球的费用相同.
科目:初中数学 来源: 题型:
【题目】如图,和都是等边三角形,连接AC,DE,CD.
(1)猜想AC与DE的数量关系,并说明理由。
(2)给出定义:若一个四边形中存在一组邻边的平方等于一条对角线的平方,则这个四边形为勾股四边形.如图,若,求证:四边形ABCD是勾股四边形。
(3)设,,的面积分别是,若,试探究与之间满足的等量关系。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】同学们都知道,|4―(―2)|表示4与-2的差的绝对值,实际上也可以理解为4与-2两数在数轴上所对应的两点之间的距离;同理|x―3|也可以理解为x与3两数在数轴上所对应的两点之间的距离,试探索并完成填空。
(1)求|8―(―3)|= ;|-3―5|= 。
(2)如图,x是0到4之间(包括0,4)的一个数,那么|x―1|+|x―2|+|x―3|+|x―4|的最小值等于多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学九年级学生共450人,其中男生250人,女生200人.该校对九年级所有学生进行了一次体育测试,并随机抽取了50名男生和40名女生的测试成绩作为样本进行分析,绘制成如下的统计表:
(1)请解释“随机抽取了50名男生和40名女生”的合理性;
(2)从上表的“频数”、“百分比”两列数据中选择一列,用适当的统计图表示;
(3)估计该校九年级学生体育测试成绩不及格的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在直角三角形ABC中,若AB=16cm,AC=12cm,BC=20cm.点P从点A开始以2厘米/秒的速度沿A→B→C的方向移动,点Q从点C开始以1厘米/秒的速度沿C→A→B的方向移动,如果点P、Q同时出发,用t(秒)表示移动时间,那么:
(1)如图1,请用含t的代数式表示,①当点Q在AC上时,CQ= ;②当点Q在AB上时,AQ= ;
③当点P在AB上时,BP= ;④当点P在BC上时,BP= .
(2)如图2,若点P在线段AB上运动,点Q在线段CA上运动,当QA=AP时,试求出t的值.
(3)如图3,当P点到达C点时,P、Q两点都停止运动,当AQ=BP时,试求出t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】直线y= x与双曲线y= 的交点A的横坐标为2
(1)求k的值
(2)如图,过点P(m,3)(m>0)作x轴的垂线交双曲线y= (x>0)于点M,交直线OA于点N
①连接OM,当OA=OM时,直接写出PN﹣PM的值
②试比较PM与PN的大小,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B型节能灯共需29元.
(1)求一只A型节能灯和一只B型节能灯的售价各是多少元;
(2)学校准备购进这两种型号的节能灯共50只,并且A型节能灯的数量不多于B型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一次数学活动中,检验两条纸带①、②的边线是否平行,小明和小丽采用两种不同的方法:小明对纸带①沿AB折叠,量得∠1=∠2=50°;小丽对纸带②沿GH折叠,发现GD与GC重合,HF与HE重合. 则下列判断正确的是( )
A. 纸带①的边线平行,纸带②的边线不平行 B. 纸带①、②的边线都平行
C. 纸带①的边线不平行,纸带②的边线平行 D. 纸带①、②的边线都不平行
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com