精英家教网 > 初中数学 > 题目详情
16.在△ABC中,AB=5cm,BC=3cm,AC=4cm,点M在AB边上,△BCM为等腰三角形,请画出图形,直接写出△BCM的面积,并画出体现解法的辅助线.

分析 根据勾股定理的逆定理得到∠ACB=90°,分三种情况①CM=BM,②BC=CM′=3,③BC=BM″=3,根据三角形的面积公式得到结果.

解答 解:∵AB=5cm,BC=3cm,AC=4cm,
∴AC2+BC2=AB2
∴∠ACB=90°,
①CM=BM,则M是AB的中点,
∴△BCM的面积=$\frac{1}{2}$S△ABC=3,
②BC=CM′=3,
过C作CH′⊥AB与H′,
∴CH′=$\frac{12}{5}$,BH′=$\frac{9}{5}$,
∴BM′=$\frac{18}{5}$,
∴△BCM的面积=$\frac{1}{2}×\frac{18}{5}$×$\frac{12}{5}$=$\frac{108}{25}$,
③BC=BM″=3,
∴△BCM的面积=$\frac{1}{2}×$3×$\frac{12}{5}$=$\frac{18}{5}$.

点评 本题考查了等腰三角形的性质,直角三角形的性质,三角形面积的计算,正确的理解题意是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

6.已知“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,…,若公式 Cnm=$\frac{n!}{m!(n-m)!}$(n>m),则C125+C126=(  )
A.${C_{13}}^5$B.${C_{13}}^6$C.${C_{13}}^{11}$D.${C_{12}}^7$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.一种型号的数码相机,原来每台售价5000元,经过两次降价后,现在每台售价为3200元,假设两次降价的百分率均为x,则x=20%.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,在长方形纸片ABCD中,AB=15cm,AD=10cm.将纸片沿EF折叠,EF∥AD,设AE=x(cm),折叠后重叠部分的面积为S(cm2).
填写下列表格:
 x/cm 1 3 5 7 9 11 13
 S/cm2103050 70 60 40 20 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,在平面直角坐标系中,O为坐标原点,抛物线F:y=ax2+2ax+c经过A(-4,0),B(0,4)两点,与x轴交于另一点C,直线y=x+5与x轴交于点D,与y轴交于点E.
(1)求抛物线的解析式及顶点坐标;
(2)求点B关于直线y=x+5的对称点B′,并判断点B′是否在抛物线的对称轴上;
(3)画出函数y=|ax2+2ax+c|的图象F′,并写出过点B且与图象F′恰有三个公共点的直线表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.二次函数y=ax2+bx+4的图象与x轴交于两点A、B,与y轴交于点C,且A(-1,0)、B(4,0)
(1)求此二次函数的表达式
(2)如图1,抛物线的对称轴m与x轴交于点E,CD⊥m,垂足为D,点F(-$\frac{7}{6}$,0),动点N在线段DE上运动,连接CF、CN、FN,若以点C、D、N为顶点的三角形与△FEN相似,求点N的坐标
(3)如图2,点M在抛物线上,且点M的横坐标是1,点P为抛物线上一动点,若∠PMA=45°,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,已知AB是⊙O的直径,C是⊙O上一点,∠BAC的平分线交⊙O于点D,交⊙O的切线BE于点E,过点D作DF⊥AC,交AC的延长线于点F.
(1)求证:DF是⊙O的切线;
(2)若DF=3,DE=2,求$\frac{BE}{AD}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.已知:如图,在平面直角坐标系xOy中,反比例函数y=$\frac{8}{x}$的图象与正比例函数y=kx(k≠0)的图象相交于横坐标为2的点A,平移直线OA,使它经过点B(3,0).
(1)求平移后直线的表达式;
(2)求OA平移后所得直线与双曲线的交点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.已知二次函数y=-x2-x+2的图象和x 轴交于点A,B,与y轴交于点C,直线OE过点Q($-\frac{1}{2}$,$-\frac{1}{4}$)且与抛物线交于点E,直线OE上方的抛物线上一动点P.
(1)求直线OE的解析式;
(2)求△POQ面积的最大值;
(3)如图2,当△POQ面积最大时,在直线OE上有一动点K,连接PK,求PK+$\frac{\sqrt{5}}{5}$EK的最小值及此时点K的坐标.

查看答案和解析>>

同步练习册答案