【题目】如图,已知矩形纸片BDEF和直角三角板BCA,点A在EF上,AC=DE=,FE=3,∠C=90°,∠CBA=30°.
(1)写出三种不同类型的结论.
(2)将直角三角板绕点B旋转,在旋转过程中,
①求点A与点E的最短距离;
②若将直角三角板绕点B从①中位置开始顺时针旋转α度(0≤α≤360),使∠BAE=90°,求α的度数.
【答案】(1)见解析;(2)②2;②60°和300°.
【解析】
(1)在Rt△ABC中,由∠C=90°,AC=可以求出∠BAC,AB、BC,通过AB=2BF得∠FAB=30°,进而得到AG=BG;
(2)①如图,当A、B、E共线时,AE最小,求出BE长即可得;
②分两种情况画出图形,求出∠EBA′和∠EBA″即可.
(1)在Rt△ABC中,∵∠C=90°,AC=,∠CBA=30°,
∴AB=2AC=2,BC==3,
∠BAC=90°-∠ABC=60°,
∵四边形BDEF是矩形,
∴BF=ED=AC=,∠F=90°,
∴AB=2BF,∠FAB=30°,
∴∠GBA=∠GAB,
∴GB=GA,
三个不同类型的结论为:AB=2,∠BAC=90°=60°,GB=GA(答案不唯一,只要合理即可);
(2)①如图,当点B,A,E三点共线时,AE最短,连接BE,
∵四边形BDEF是矩形,
∴∠D=90°,BD=EF=3,BF=DE=,
∴BE===4,
∴AE=BE-AB=4-2=2;
②在图1中,∵∠BA′E=90°,
∴cos∠EBA′=,
∴∠EBA′=60°,
同理,在图2中,∠A″BE=60°,
∴旋转角α=60°或300°.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,以点B为圆心,BC长为半径画弧,交线段AB于点D;以点A为圆心,AD长为半径画弧,交线段AC于点E,连结CD.
(1)若∠A=28°,求∠ACD的度数.
(2)设BC=a,AC=b.
①线段AD的长是方程x2+2ax﹣b2=0的一个根吗?说明理由.
②若AD=EC,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,为了测量出楼房AC的高度,从距离楼底C处米的点D(点D与楼底C在同一水平面上)出发,沿斜面坡度为i=1:的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53°,求楼房AC的高度(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈,计算结果用根号表示,不取近似值).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.
(1)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率.
(2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了有效地落实国家精准扶贫政策,切实关爱贫困家庭学生.某校对全校各班贫困家庭学生的人数情况进行了调查.发现每个班级都有贫困家庭学生,经统计班上贫困家庭学生人数分别有1名、2名、3名、5名,共四种情况,并将其制成了如下两幅不完整的统计图:
(1)填空:a = ,b= ;
(2)求这所学校平均每班贫困学生人数;
(3)某爱心人士决定从2名贫困家庭学生的这些班级中,任选两名进行帮扶,请用列表或画树状图的方法,求出被选中的两名学生来自同一班级的概率.
贫困学生人数 | 班级数 |
1名 | 5 |
2名 | 2 |
3名 | a |
5名 | 1 |
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,PA、PB、CD是⊙O的切线,A、B、E是切点,CD分别交PA、PB于C、D两点,若∠APB=40°,PA=5,则下列结论:①PA=PB=5;②△PCD的周长为5;③∠COD=70°.正确的个数为( )
A. 3个 B. 2个 C. 1个 D. 0个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读理解:如图1,在四边形ABCD的边AB上任取一点E(点E不与A、B重合),分别连接ED、EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的“相似点”:如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的“强相似点”.解决问题:
(1)如图1,∠A=∠B=∠DEC=45°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;
(2)如图2,在矩形ABCD中,A、B、C、D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图②中画出矩形ABCD的边AB上的强相似点;
(3)如图3,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处,若点E恰好是四边形ABCM的边AB上的一个强相似点,试探究AB与BC的数量关系.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com