精英家教网 > 初中数学 > 题目详情

【题目】如图,已知矩形纸片BDEF和直角三角板BCA,点AEF上,ACDEFE=3C=90°,CBA=30°.

(1)写出三种不同类型的结论.

(2)将直角三角板绕点B旋转,在旋转过程中,

①求点A与点E的最短距离;

②若将直角三角板绕点B从①中位置开始顺时针旋转α(0≤α≤360),使∠BAE=90°,求α的度数.

【答案】(1)见解析;(2)②2;②60°和300°.

【解析】

(1)Rt△ABC中,由∠C=90°,AC=可以求出∠BAC,AB、BC,通过AB=2BF∠FAB=30°,进而得到AG=BG;

(2)①如图A、B、E共线时,AE最小,求出BE长即可得;

②分两种情况画出图形,求出∠EBA′∠EBA″即可.

(1)Rt△ABC中,∵∠C=90°,AC,∠CBA=30°,

∴AB=2AC=2,BC==3,

∠BAC=90°-∠ABC=60°,

四边形BDEF是矩形,

∴BF=ED=AC=,∠F=90°,

∴AB=2BF,∠FAB=30°,

∴∠GBA=∠GAB,

∴GB=GA,

三个不同类型的结论为:AB=2,∠BAC=90°=60°,GB=GA(答案不唯一,只要合理即可)

(2)①如图,当点BAE三点共线时,AE最短,连接BE,

四边形BDEF是矩形,

∴∠D=90°,BD=EF=3,BF=DE=

BE===4

AE=BE-AB=4-2=2

在图1,∵∠BA′E=90°,

∴cos∠EBA′=,

∴∠EBA′=60°,

同理,在图2,∠A″BE=60°,

∴旋转角α=60°300°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠ACB90°,以点B为圆心,BC长为半径画弧,交线段AB于点D;以点A为圆心,AD长为半径画弧,交线段AC于点E,连结CD

1)若∠A28°,求∠ACD的度数.

2)设BCaACb

①线段AD的长是方程x2+2axb20的一个根吗?说明理由.

②若ADEC,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,锐角△ABC BC=a,AC=b,AB=c,记三角形 ABC 的面积为 S.

(1)求证:S=absinC;

(2)求证:.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,为了测量出楼房AC的高度,从距离楼底C处米的点D(点D与楼底C在同一水平面上)出发,沿斜面坡度为i=1:的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53°,求楼房AC的高度(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈,计算结果用根号表示,不取近似值).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.

1)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率.

2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了有效地落实国家精准扶贫政策,切实关爱贫困家庭学生.某校对全校各班贫困家庭学生的人数情况进行了调查.发现每个班级都有贫困家庭学生,经统计班上贫困家庭学生人数分别有1名、2名、3名、5名,共四种情况,并将其制成了如下两幅不完整的统计图:

(1)填空:a = b=

(2)求这所学校平均每班贫困学生人数;

(3)某爱心人士决定从2名贫困家庭学生的这些班级中,任选两名进行帮扶,请用列表或画树状图的方法,求出被选中的两名学生来自同一班级的概率.

贫困学生人数

班级数

1

5

2

2

3

a

5

1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,PAPBCDO的切线,ABE是切点,CD分别交PAPBCD两点,若∠APB=40°,PA=5,则下列结论:PAPB=5;PCD的周长为5;COD=70°.正确的个数为(  )

A. 3 B. 2 C. 1 D. 0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解:如图1,在四边形ABCD的边AB上任取一点E(点E不与A、B重合),分别连接ED、EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的相似点:如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的强相似点.解决问题:

(1)如图1,A=B=DEC=45°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;

(2)如图2,在矩形ABCD中,A、B、C、D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图②中画出矩形ABCD的边AB上的强相似点;  

(3)如图3,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处,若点E恰好是四边形ABCM的边AB上的一个强相似点,试探究ABBC的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE

求证:1∠CEB=∠CBE

2)四边形BCED是菱形.

查看答案和解析>>

同步练习册答案