如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标为(3,3).将正方形ABCO绕点A顺时针旋转角度α(0°<α<90°),得到正方形ADEF,ED交线段OC于点G,ED的延长线交线段BC于点P,连AP、AG.
(1)求证:△AOG≌△ADG;
(2)求∠PAG的度数;并判断线段OG、PG、BP之间的数量关系,说明理由;
(3)当∠1=∠2时,求直线PE的解析式;
(4)在(3)的条件下,直线PE上是否存在点M,使以M、A、G为顶点的三角形是等腰三角形,若存在,请直接写出M点坐标;若不存在,请说明理由.
![]()
(1)证明:由题意得,
AO=AD,∠AOG=∠ADG=90°,
∴在Rt△AOG和Rt△ADG中,AO=AD,AG=AG,
∴△AOG≌△ADG(HL). ……2分
(2)∠PAG =45°,PG=OG+BP.理由如下:
由(1)同理可证△ADP≌△ABP,则∠DAP=∠BAP,DP=BP,
∵由(1)△AOG≌△ADG,∴∠1=∠DAG,DG=OG,
又∵∠1+∠DAG+∠DAP+∠BAP=90°,
∴2∠DAG+2∠DAP=90°,即∠DAG+∠DAP=45°,∴∠PAG=∠DAG+∠DAP=45°.
∴PG=DG+DP=OG+BP. ……6分
(3)∵△AOG≌△ADG,∴∠AGO=∠AGD,
又∵∠1+∠AGO=90°,∠2+∠PGC=90°,∠1=∠2,∴∠AGO=∠AGD=∠PGC,
又∵∠AGO+∠AGD+∠PGC=180°,∴∠AGO=∠AGD=∠PGC=60°,∴∠1=∠2=30°,
在Rt△AOG中,AO=3,OG=AOtan30°=
,
∴G点坐标为(
,0),CG=3﹣
,
在Rt△PCG中,PC=
=
-3, ∴P点坐标为:(3,
-3)
设直线PE的解析式为y=kx+b,
则
, 解得![]()
∴直线PE的解析式为y=
x﹣3. ……10分
(4)
、
.
科目:初中数学 来源: 题型:
某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售,根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进
价,单价降低x元销售销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出.
(1)记第二周及两周后该商店销售这种纪念品的利润分别为y1, y2,请分别求出y1, y2关于x的函数解析式;(4分)
(2)如果这批旅游纪念品共获利1250元,问第二周每个纪念品的销售价格为多少元?(4分)
查看答案和解析>>
科目:初中数学 来源: 题型:
如图平面直角坐标系中,点A(1,n)和点B(m,1)为双曲线y=
第一象限上两点,连结OA、OB.
(1)试比较m、n的大小;
(2)若∠AOB=30°,求双曲线的解析式.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
.某单位一星期内收入情况如下(盈余为正):+853.5元,+237.2元,﹣325元,+138.5元,﹣280元,﹣520元,+103元,那么,这一星期内该单位是盈余还是亏损?盈余或亏损多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com