考点:完全平方数
专题:
分析:将n4+2n3+6n2+12n+25变形可得n4+2n3+6n2+12n+25>(n2+n+2)2,n4+2n3+6n2+12n+25<(n2+n+5)2,从而得到n4+2n3+6n2+12n+25=(n2+n+3)2或n4+2n3+6n2+12n+25=(n2+n+4)2,解方程即可求解.
解答:解:n4+2n3+6n2+12n+25
=n4+2n3+n2+5n2+12n+25
=(n2+n+2)2+n2+8n+20>(n2+n+2)2,
又∵n4+2n3+6n2+12n+25
=n4+2n3+n2+5n2+12n+25
=(n2+n+5)2+5n2+12n+25
=(n2+n+5)2-5n2+2n<(n2+n+5)2,
∴n4+2n3+6n2+12n+25=(n2+n+3)2或n4+2n3+6n2+12n+25=(n2+n+4)2,
由n4+2n3+6n2+12n+25=(n2+n+3)2得:n2-6n-16=0,即(n-8)(n+2)=0,
∴n=8,此时n4+2n3+6n2+12n+25=5625=752,
由n4+2n3+6n2+12n+25=(n2+n+4)2得:3n2-4n-9=0,无正整数解.
综上所述,n有唯一的正整数值8.
故答案为:8.
点评:考查了完全平方数,关键是熟练掌握完全平方公式,得到方程组n4+2n3+6n2+12n+25=(n2+n+3)2或n4+2n3+6n2+12n+25=(n2+n+4)2.