精英家教网 > 初中数学 > 题目详情

【题目】已知,BC∥OA,∠B=∠A=100°,试回答下列问题:

(1)如图①,求证:OB∥AC.
(2)如图②,若点E、F在线段BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF.则∠EOC的度数等于;(在横线上填上答案即可).
(3)在(2)的条件下,若平行移动AC,如图③,那么∠OCB:∠OFB的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值.
(4)在(3)的条件下,如果平行移动AC的过程中,若使∠OEB=∠OCA,此时∠OCA度数等于 . (在横线上填上答案即可).

【答案】
(1)证明:∵BC∥OA,

∴∠B+∠O=180°,

∴∠O=180°﹣∠B=80°,

而∠A=100°,

∴∠A+∠O=180°,

∴OB∥AC


(2)40°
(3)解:不改变.

∵BC∥OA,

∴∠OCB=∠AOC,∠OFB=∠AOF,

∵∠FOC=∠AOC,

∴∠AOF=2∠AOC,

∴∠OFB=2∠OCB,

即∠OCB:∠OFB的值为1:2


(4)60°
【解析】(2)解:∵OE平分∠BOF,
∴∠BOE=∠FOE,
而∠FOC=∠AOC,
∴∠EOF+∠COF= ∠AOB= ×80°=40°;(4)解:设∠AOC的度数为x,则∠OFB=2x,
∵∠OEB=∠AOE,
∴∠OEB=∠EOC+∠AOC=40°+x,
而∠OCA=180°﹣∠AOC﹣∠A=180°﹣x﹣100°=80°﹣x,
∵∠OEB=∠OCA,
∴40°+x=80°﹣x,解得x=20°,
∴∠OCA=80°﹣x=80°﹣20°=60°.
所以答案是40°,60°.
【考点精析】掌握平行线的判定与性质是解答本题的根本,需要知道由角的相等或互补(数量关系)的条件,得到两条直线平行(位置关系)这是平行线的判定;由平行线(位置关系)得到有关角相等或互补(数量关系)的结论是平行线的性质.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知ab是实数xa2+b2+24,y=2(3a+4b),xy的大小关系是(  

A. xy B. xy C. xy D. 不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠A=∠B=90°,E是AB上的一点,且AE=BC,∠1=∠2.
(1)求证:Rt△ADE与Rt△BEC全等;
(2)求证:△CDE是直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算(a﹣2)2的结果是(
A.a2﹣4
B.a2﹣2a+4
C.a2﹣4a+4
D.a2+4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列方程中一定是一元二次方程的是( )
A.x2﹣6x=x2+9
B.(x﹣1)(x+2)=0
C.ax2﹣6x=0
D.(a﹣3)x2=5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线轴交于A、B(A点在B点的左侧)与轴交于点C.

(1)如图1,连接AC、BC,若△ABC的面积为3时,求抛物线的解析式;

(2)如图2,点P为第四象限抛物线上一点,连接PC,若时,求点P的横坐标;

(3)如图3,在(2)的条件下,点F在AP上,过点P作PH⊥轴于H点,点K在PH的延长线上,AK=KF,∠KAH=∠FKH,PF=,连接KB并延长交抛物线于点Q,求PQ的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把长为6厘米的线段水平向右平移10厘米后的新线段长为___________厘米

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在5×5的正方形网格中,每个小正方形的边长为1,请在所给网格中按下列要求画出图形.
(1)(i)已知点A在格点(即小正方形的顶点)上,画一条线段AB,长度为 ,且点B在格点上. (ii)以上题所画的线段AB为一边,另外两条边长分别为 .画一个△ABC,使点C在格点上(只需画出符合条件的一个三角形).
(2)所画出的△ABC的边AB上的高线长为 . (直接写出答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学计划从办公用品公司购买A,B两种型号的小黑板.经洽谈,购买一块A型小黑板比购买一块B型小黑板多用20元,且购买5块A型小黑板和4块B型小黑板共需820元.
(1)求购买一块A型小黑板、一块B型小黑板各需多少元.
(2)根据该中学实际情况,需从公司购买A,B两种型号的小黑板共60块,要求购买A,B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量不小于购买B型小黑板数量的 .则该中学从公司购买A,B两种型号的小黑板有哪几种方案?哪种方案的总费用最低?

查看答案和解析>>

同步练习册答案