精英家教网 > 初中数学 > 题目详情

【题目】两个三角板ABCDEF,按如图所示的位置摆放,点B与点D重合,边AB与边DE在同一条直线上(假设图形中所有的点,线都在同一平面内).其中,∠C=∠DEF=90°∠ABC=∠F=30°AC=DE=6cm.现固定三角板DEF,将三角板ABC沿射线DE方向平移,当点C落在边EF上时停止运动.设三角板平移的距离为xcm),两个三角板重叠部分的面积为ycm2).

1)当点C落在边EF上时,x= cm

2)求y关于x的函数解析式,并写出自变量x的取值范围;

3)设边BC的中点为点M,边DF的中点为点N.直接写出在三角板平移过程中,点M与点N之间距离的最小值.

【答案】115;(2;(3

【解析】

1)由锐角三角函数,得到BG的长,进而可得GE的长,由矩形的性质,可得答案;

2)分类讨论:0≤t6时,根据三角形的面积公式,可得答案;6≤t12时,12t≤15时,根据面积的和差,可得答案;

3)根据点与直线上所有点的连线中垂线段最短,可得M在线段NG上,根据三角形的中位线,可得NG的长,根据锐角三角函数,可得MG的长,根据线段的和差,可得答案.

解:(1)如图1所示:作CG⊥ABG点.

Rt△ABC中,由AC=6∠ABC=30,得:BC==.在Rt△BCG中,BG=BCcos30°=9.四边形CGEH是矩形,CH=GE=BG+BE=9+6=15cm,故答案为15

20≤x6时,如图2所示.

∠GDB=60°∠GBD=30°DB=x,得:DG=BG=,重叠部分的面积为y=DGBG=××=

6≤x12时,如图3所示.

BD=xDG=BG=BE=x6EH=.重叠部分的面积为y==DGBGBEEH,即y=××,化简,得

12x≤15时,如图4所示.

AC=6BC=BD=xBE=x6),EG=,重叠部分的面积为y==ACBCBEEG,即y=,化简,得=

综上所述:

3)如图5所示作NG⊥DEG点.

MNG上时MN最短,NG△DEF的中位线,NG=EF=

MB=CB=∠B=30°MG=MB=

MN最小==

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】1)观察猜想,如图①点BAC在同一条直线上,DBBCECBC且∠DAE90°ADAE,则BCBDCE之间的数量关系为   

2)问题解决,如图②,在RtABC中,∠ABC90°CB6AB3,以AC为直角边向外作等腰RtDAC,连结BD,求BD的长;

3)拓展延伸,如图③,在四边形ABCD中,∠ABC=∠ADC90°CB6AB3DCDA,请直接写出BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了保证端午龙舟赛在我市汉江水域顺利举办,某部门工作人员乘快艇到汉江水域考察水情,以每秒10米的速度沿平行于岸边的赛道AB由西向东行驶.在A处测得岸边一建筑物P在北偏东30°方向上,继续行驶40秒到达B处时,测得建筑物P在北偏西60°方向上,如图所示,求建筑物P到赛道AB的距离(结果保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:

(1)这次活动共调查了   人;在扇形统计图中,表示支付宝支付的扇形圆心角的度数为   

(2)将条形统计图补充完整.观察此图,支付方式的众数   ”;

(3)在一次购物中,小明和小亮都想从微信”、“支付宝”、“银行卡三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解不等式组请结合题意填空,完成本题的解答.

)解不等式,得   

)解不等式,得   

)把不等式的阶级在数轴上表示出来;

)原不等式组的解集为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,我南海某海域A处有一艘捕鱼船在作业时突遇特大风浪,船长马上向我国渔政搜救中心发出求救信号,此时一艘渔政船正巡航到捕鱼船正西方向的B处,该渔政船收到渔政求救中心指令后前去救援,但两船之间有大片暗礁,无法直线到达,于是决定马上调整方向,先向北偏东60°方向以每小时40海里的速度航行半小时到达C处,同时捕鱼船低速航行到A点的正北2海里D处,渔政船航行到点C处时测得点D在南偏东53°方向上.

1)求CD两点的距离;

2)渔政船决定再次调整航向前去救援,若两船航速不变,并且在点E处相会合,求∠ECD的正弦值.(参考数据:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,分别过第二象限内的点轴的平行线,与轴分别交于点,与双曲线分别交于点

下面三个结论,

①存在无数个点使

②存在无数个点使

③存在无数个点使

所有正确结论的序号是__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一天清晨,甲、乙两人在一条笔直的道路上同起点、同终点往返跑步.甲跑了分钟后乙再出发,当乙追上甲时,甲加快速度往前跑,先到达终点后立刻以加快后的速度返回起点.已知甲加速前、后分别保持匀速跑,乙全程均保持匀速跑下图是甲乙两人之间的距离(米)与甲跑步的时间(分)的部分函数图象.则当乙第一次到达终点时,甲距起点______米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A(0,1,点B(﹣9,10,AC∥x轴,点P时直线AC下方抛物线上的动点.

(1求抛物线的解析式;(2过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;

(3当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案