【题目】已知直线l1:y=﹣x+b与x轴交于点A,直线l2:y=x﹣与x轴交于点B,直线l1、l2交与点C,且C点的横坐标为1.
(1)如图,过点A作x轴的垂线,若点P(x,2)为垂线上的一个点,Q是y轴上一动点,若S△CPQ=5,求此时点Q的坐标;
(2)若P在过A作x轴的垂线上,点Q为y轴上的一个动点,当CP+PQ+QA的值最小时,求此时P的坐标;
(3)如图,点E的坐标为(﹣2,0),将直线l1绕点C旋转,使旋转后的直线l3刚好过点E,过点C作平行于x轴的直线l4,点M、N分别为直线l3、l4上的两个动点,是否存在点M、N,使得△BMN是以M点为直角顶点的等腰直角三角形,若存在, 求出N点的坐标;若不存在,请说明理由.
【答案】(1)Q的坐标为(0,0)或(0,-5);(2)点P的坐标为(﹣3,﹣);(3)①点N的坐标为(﹣16,﹣4),②点N的坐标为(﹣,﹣4)或(﹣16,﹣4).
【解析】
(1)当x=1时,y=x﹣,即点C的坐标为(1,-4),将点C的坐标代入直线l1:y=-x+b中,即可求直线l1解析式;再根据P点纵坐标为2,求出P点坐标,然后求出直线AC的解析式,因为直线AC交y轴于点M,所以M横坐标为0,再求出纵坐标,最后根据S△CPQ=QM×(xC﹣xP)==5,解得:yQ=0或-5,即可得出结果;(2)根据最短路径问题可得:作C关于过A垂线的对称点C′(﹣7,﹣4)、A关于y轴的对称点A′(3,0),连接A′C′交过A点的垂线与点P,交y轴于点Q,此时,CP+PQ+QA的值最小,解得直线A′C′的表达式,从而求得点P的坐标;(3)如图2,点E的坐标为(-2,0),将直线l1绕点C逆时针旋转,使旋转后的直线l3刚好过点E,过点C作平行于x轴的直线l4,点M、N分别为直线l3、l4上的两个动点,是否存在点M、N,使得△BMN是以M点为直角顶点的等腰直角三角形,若存在,直接写出N点的坐标;若不存在,请说明理由.
(1)直线l2:y=x﹣,令x=1,则y=﹣4,故C(1,﹣4),
把C(1,﹣4)代入直线l1:y=﹣x+b,得:b=﹣3,则l1为:y=﹣x﹣3, 所以A(﹣3,0),所以点P坐标为(﹣3,2),如图,设直线AC交y轴于点M,
设yPC=mx+t得:,解得, ∴yPC=-1.5x-2.5,即M(0,-2.5).
S△CPQ=QM×(xC﹣xP)==5,解得:yQ=0或-5,
∴Q的坐标为(0,0)或(0,
(2)确定C关于过A垂线的对称点C′(﹣7,﹣4)、A关于y轴的对称点A′(3,0),
连接A′C′交过A点的垂线与点P,交y轴于点Q,此时,CP+PQ+QA的值最小,
将点A′、C′点的坐标代入一次函数表达式:y=k′x+b′得:,解得: ,
则直线A′C′的表达式为:y=x﹣,当x=﹣3时,y=﹣,
即点P的坐标为(﹣3,﹣),
(3)将E、C点坐标代入一次函数表达式,同理可得其表达式为
①当点M在直线l4上方时,设点N(n,﹣4),点M(s,﹣s﹣),点B(4,0),
过点N、B分别作y轴的平行线交过点M与x轴的平行线分别交于点R、S,
∵∠RMN+∠RNM=90°,∠RMN+∠SMR=90°,
∴∠SMR=∠RNM,
∠MRN=∠MSB=90°,MN=MB,
∴△MSB≌△NRM(AAS),
∴RN=MS,RM=SB,
即 ,解得
故点N的坐标为(﹣16,﹣4),
②当点M在l4下方时,如图1,过点M作PQ∥x轴,与过点B作y轴的平行线交于Q,与过点N作y轴的平行线交于P,
同①的方法得,N(﹣,﹣4),
即:点N的坐标为(﹣,﹣4)或(﹣16,﹣4).
科目:初中数学 来源: 题型:
【题目】如图1,抛物线y=﹣x2+mx+n交x轴于点A(﹣2,0)和点B,交y轴于点C(0,2).
(1)求抛物线的函数表达式;
(2)若点M在抛物线上,且S△AOM=2S△BOC,求点M的坐标;
(3)如图2,设点N是线段AC上的一动点,作DN⊥x轴,交抛物线于点D,求线段DN长度的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,图中的小方格都是边长为1的正方形, △ABC与△A′ B′ C′是关于点0为位似中心的位似图形,它们的顶点都在小正方形的顶点上.
(1)画出位似中心点0;
(2)求出△ABC与△A′B′C′的位似比;
(3)以点0为位似中心,再画一个△A1B1C1,使它与△ABC的位似比等于1.5.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC在直角坐标系中,
(1)若把△ABC向右平移2个单位,再向下平移3个单位得到△A′B′C′,写出 A′、B′、C′的坐标,并在图中画出平移后图形.
(2)如果在第二象限内有一点P(m,3),四边形ACOP的面积为 (用含m的式子表示)
(3)在(2)的条件下,是否存在点P,使四边形ACOP的面积与△ABC的面积相等?若存在,求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校设计了如图所示的雕塑,取名“阶梯”, 现在工厂师傅打算用油漆喷刷所有暴露面,经测量,已知每个小立方体的棱长为0.5米.
(1)请你画出从它的正面、左面、上面三个不同方向看到的平面图形.
(2)请你帮助工人师傅计算一下,需要喷刷油漆的总面积是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线经过B(﹣1,0),D(﹣2,5)两点,与x轴另一交点为A,点H是线段AB上一动点,过点H的直线PQ⊥x轴,分别交直线AD、抛物线于点Q,P.
(1)求抛物线的解析式;
(2)是否存在点P,使∠APB=90°,若存在,求出点P的横坐标,若不存在,说明理由;
(3)连接BQ,一动点M从点B出发,沿线段BQ以每秒1个单位的速度运动到Q,再沿线段QD以每秒个单位的速度运动到D后停止,当点Q的坐标是多少时,点M在整个运动过程中用时t最少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图,灯A射线自AM顺时针旋转至AN便立即回转,灯B射线自BP顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是a度/秒,灯B转动的速度是b度/秒,且a,b满足|a﹣3b﹣1|+(a+b﹣5)2=0.假定这一带长江两岸河堤是平行的,即PQ∥MN,且∠BAN=45°.
(1)求a,b的值;
(2)若两灯同时转动,经过42秒,两灯射出的光束交于C,求此时∠ACB的度数;
(3)若灯B射线先转动10秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(直接写出答案)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.
求证:(1)△ABE≌△CDF;
(2)四边形BFDE是平行四边形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个不透明的布袋里装有4个标有1,2,3,4的小球,它们的形状、大小完全相同,小明从布袋里随机取出一个小球,记下数字为x,小红在剩下的3个小球中随机取出一个小球,记下数字为y
(1)计算由x、y确定的点(x,y)在函数y=﹣x+5的图象上的概率.
(2)小明和小红约定做一个游戏,其规则为:若x、y满足xy>6,则小明胜;若x、y满足xy<6,则小红胜,这个游戏公平吗?请说明理由;若不公平,请写出公平的游戏规则.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com