精英家教网 > 初中数学 > 题目详情

【题目】如图,已知A、B、C、D、E是⊙O上五点,⊙O的直径BE=2BCD=120°,A的中点,延长BA到点P,使BA=AP,连接PE.

(1)求线段BD的长;

(2)求证:直线PE是⊙O的切线.

【答案】(1)3;(2)证明见解析.

【解析】1)连接DB,如图,利用圆内接四边形的性质得∠DEB=60°,再根据圆周角定理得到∠BDE=90°,然后根据含30度的直角三角形三边的关系计算BD的长;

(2)连接EA,如图,根据圆周角定理得到∠BAE=90°,而A的中点,则∠ABE=45°,再根据等腰三角形的判定方法,利用BA=AP得到BEP为等腰直角三角形,所以∠PEB=90°,然后根据切线的判定定理得到结论.

(1)连接DE,如图,

∵∠BCD+DEB=180°,

∴∠DEB=180°﹣120°=60°,

BE为直径,

∴∠BDE=90°,

RtBDE中,DE=BE=×2=

BD=DE=×=3;

(2)证明:连接EA,如图,

BE为直径,

∴∠BAE=90°,

A的中点,

∴∠ABE=45°,

BA=AP,

EABA,

∴△BEP为等腰直角三角形,

∴∠PEB=90°,

PEBE,

∴直线PE是⊙O的切线.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,ABC是边长为5cm的等边三角形,点PQ分别从顶点AB同时出发,沿线段ABBC运动,且它们的速度都为1cm/s.当点P到达点B时,PQ两点停止运动,设点P的运动时间为ts).

1)当t为何值时,PBQ是直角三角形?

2)连接AQCP,相交于点M,则点PQ在运动的过程中,CMQ会变化吗?若变化,则说明理由;若不变,请求出它的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,ADBCAE平分∠BAC

1)若∠B=70°,∠C=30°,求;

①∠BAE的度数.

②∠DAE的度数.

2)探究:如果只知道∠B=C+40°,那么能求岀∠DAE的度数吗?若能,请你写出求解过程;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,ADBC边上的高,AE、BF分别是∠BAC、ABC的平分线,∠BAC=50°,ABC=60°,则∠EAD+ACD=(  )

A. 75° B. 80° C. 85° D. 90°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,∠BAC90°,点DBC上一点,将ABD沿AD翻折后得到AED,边AE交射线BC于点F

1)如(图1),当AEBC时,求证:DEAC

2)若∠C2B,∠BAD0x60

①如(图2),当DEBC时,求x的值.

②是否存在这样的x的值,使得DEF中有两个角相等.若存在,并求x的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,E、F分别为线段AB、AC上的点(不与A、B、C重合).

(1)如图1,若EFBC,求证:

(2)如图2,若EF不与BC平行,(1)中的结论是否仍然成立?请说明理由;

(3)如图3,若EF上一点G恰为ABC的重心,,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:

1)∠A和∠5是直线______和直线_____被直线_______所截而成的,∠A和∠4是直线_____和直线_____被直线_____所截而成的,∠1和∠8是直线_____和直线_____被直线___________所截而成的.

2)指出图中所有的同位角__________________________;指出图中所有的内错角_______________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图表示甲、乙两名选手在一次自行车越野赛中,路程y(千米)随时间x(分)变化的图象.下面几个结论:①比赛开始24分钟时,两人第一次相遇.②这次比赛全程是10千米.③比赛开始38分钟时,两人第二次相遇.正确的结论为_____(只填序号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】目前微信”、“支付宝”、“共享单车网购给我们的生活带来了很多便利,初二数学小组在校内对你最认可的四大新生事物进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.

(1)根据图中信息求出m=   ,n=   

(2)请你帮助他们将这两个统计图补全;

(3)根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可微信这一新生事物?

(4)已知A、B两位同学都最认可微信”,C同学最认可支付宝”D同学最认可网购从这四名同学中抽取两名同学,请你通过树状图或表格,求出这两位同学最认可的新生事物不一样的概率.

查看答案和解析>>

同步练习册答案