精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系中,O是坐标原点,矩OABC的位置如图所示,点A,C的坐标分别为(10,0),(0,8),点P是y轴上的一个动点,将△OAP沿AP翻折得到:△O′AP,直线BC与直线O′P交于点E,与直线O′A交于点F.

(1)当O′落在直线BC上时,求折痕AP的长.
(2)当点P在y轴正半轴上时,若△PCE与△POA相似,求直线AP的解析式;
(3)在点P的运动过程中,是否存在某一时刻,使得 ?若存在,求点P坐标;若不存在,请说明理由.

【答案】
(1)

解:图1,当O′落在直线BC上时,在RT△ABO′中,∵AO′=10,AB=8,

∴BO′= = =6,

∵△APO′是由△AOP翻折,

∴可以设PO=PO′=x,

在RT△PCO′中,∵PO′2=PC2+CO′2

∴x2=(8﹣x)2+42

∴x=5,

∴AP= = =5


(2)

解:当∠CPE=∠APO时,

∵∠CPE=∠APO=∠APO′=60°,

∴OP= OA=

设直线AP为y=kx+b,由题意 解得

∴直线AP为y=﹣ x+

当∠CPE=∠OAP时,∠CEP=∠APO=∠APO′,此时AP∥EC,显然不可能


(3)

解:情形1如图2中,

∵CE= BC=2,

∴BE=8,AE= =8 ,EO′= =2

设OP=x,在RT△PCE中,∵PE2=PC2+CE2

∴(x﹣2 2=(8﹣x)2+22

∴x= ,此时P[0, ],

情形2如图3中,

同理O′E=2

设OP=x,在RT△PCE中,∵PE2=PC2+CE2

∴(x+2 2=(8﹣x)2+22

∴x= ,此时P[0, ],

情形3如图4中,

AE= = =4

EO′= =6

设OP=x,在RT△PCE中,∵PE2=PC2+CE2

∴(6 ﹣x)2=(x﹣8)2+22

∴x= ,此时P[0, ],

情形4如图5中,

设OP=x,在RT△PCE中,∵PE2=PC2+CE2

∴(6 ﹣x)2=(x+8)2+22

∴x= ,此时P[0, ].


【解析】(1)先在RT△ABO′求出BO′,设PO=PO′=x,在RT△PCO′中利用勾股定理解决即可.(2)当∠CPE=∠APO时得∠CPE=∠APO=∠APO′=60°求出OP= OA即可.当∠CPE=∠OAP时,∠CEP=∠APO=∠APO′,此时AP∥EC,显然不可能.(3)分四种情形讨论,在RT△PCE中利用E2=PC2+CE2列出方程求解
【考点精析】解答此题的关键在于理解相似三角形的性质的相关知识,掌握对应角相等,对应边成比例的两个三角形叫做相似三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知点A在数轴上对应的数为a,点B在数轴上对应的数为b,且|a+3|+|b-2|=0,A,B 之间的距离记为|AB|.请回答问题:

(1)直接写出a,b, |AB|的值. a= ,b = , |AB|=

(2)设点P在数轴上对应的数为x,当|PA|-|PB|=2时,求x的值

(3)若点P在点A的左侧,M、N分别是PA、PB的中点.当点P在点A的左侧移动时,式子|PN|-|PM|的值是否发生改变?若不变,请求出其值;若发生变化,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数轴是初中数学的一个重要工具.利用数轴可以将数与形完美的结合.研究数轴我们发现了许多重要的规律:数轴上A点、B点表示的数为a、b,则A,B两点之间的距离AB=|a﹣b|,若a>b,则可简化为AB=a﹣b.

如图:

已知数轴上有A、B两点,分别表示的数为﹣10,8,点A以每秒3个单位的速度沿数轴向右匀速运动,点B以每秒2个单位向左匀速运动.设运动时间为t秒(t>0).

(综合运用).

(1)点A运动2秒后所在位置的点表示的数为   ;点B运动3秒后所在位置的点表示的数为   

(2)它们按上述方式运动,A、B两点经过多少秒会相遇,相遇点所表示的数是什么?

(3)它们按上述方式运动,A、B两点经过多少秒后相距2个单位长度?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】同学们,足球是世界上第一大运动,你热爱足球运动吗?已知在足球比赛中,胜一场得3分,平一场得1分,负一场得0分,一队共踢了30场比赛,负了9场,共得47分,那么这个队胜了(  )

A. 10 B. 11 C. 12 D. 13

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某飞机于空中探测某座山的高度,在点A处飞机的飞行高度是AF=3700米,从飞机上观测山顶目标C的俯角是45°,飞机继续以相同的高度飞行300米到B处,此时观测目标C的俯角是50°,求这座山的高度CD.
(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.20).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图四边形ABCDAB=AD=2A=60°BC=CD=3

1)求∠ADC的度数

2)求四边形ABCD的面积

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点P的坐标为(ab),点P的“变换点”P`的坐标定义如下:当时,P`点坐标为(a,-b);当时,P`点坐标为(b,-a)。线段l上所有点按上述“变换点”组成一个新的图形,若直线与组成的新的图形有两个交点,则k的取值范围是(

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P.

(1)若AE=CF;
①求证:AF=BE,并求∠APB的度数;
②若AE=2,试求APAF的值;
(2)若AF=BE,当点E从点A运动到点C时,试求点P经过的路径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,DBC的中点,过D点的直线GFACF,交AC的平行线BGG点,DE⊥DF,交AB于点E,连结EGEF

1)求证:BGCF

2)请你判断BE+CFEF的大小关系,并说明理由.

查看答案和解析>>

同步练习册答案