【题目】数轴是初中数学的一个重要工具.利用数轴可以将数与形完美的结合.研究数轴我们发现了许多重要的规律:数轴上A点、B点表示的数为a、b,则A,B两点之间的距离AB=|a﹣b|,若a>b,则可简化为AB=a﹣b.
如图:
已知数轴上有A、B两点,分别表示的数为﹣10,8,点A以每秒3个单位的速度沿数轴向右匀速运动,点B以每秒2个单位向左匀速运动.设运动时间为t秒(t>0).
(综合运用).
(1)点A运动2秒后所在位置的点表示的数为 ;点B运动3秒后所在位置的点表示的数为 ;
(2)它们按上述方式运动,A、B两点经过多少秒会相遇,相遇点所表示的数是什么?
(3)它们按上述方式运动,A、B两点经过多少秒后相距2个单位长度?
【答案】(1) ﹣4;2.(2) A,B两点经过3.6秒后会相遇,相遇点所表示的数是0.8.(3) 经过3.2s或4s后A,B两点相距2个单位.
【解析】
(1)点A运动t秒后所在位置的点表示的数=运动开始前A点表示的数+点A运动的路程,点B运动t秒后所在位置的点表示的数=运动开始前B点表示的数-点B运动的路程;
(2)设它们按上述方式运动,A、B两点经过t秒会相遇,等量关系为:点A运动的路程+点B运动的路程=18,依此列出方程,解方程即可;
(3)分类讨论①若A点在左边,B点在右边,则8﹣2t﹣(﹣10+3t)=2,②若A点在右边,B点在左边,则﹣10﹣3t﹣(8﹣2t)=2,求解即可得出结论.
(1)﹣10+3×2=﹣4,8﹣2×3=2.
故答案为:﹣4;2.
(2)根据题意得:﹣10+3t=8﹣2t,
解得: t=3.6,
∴﹣10+3t=0.8.
答:A,B两点经过3.6秒后会相遇,相遇点所表示的数是0.8.
(3)分类讨论:
①若A点在左边,B点在右边,则8﹣2t﹣(﹣10+3t)=2,
解得:t=3.2;
②若A点在右边,B点在左边,则﹣10﹣3t﹣(8﹣2t)=2,
解得:t=4.
答:经过3.2s或4s后A,B两点相距2个单位.
科目:初中数学 来源: 题型:
【题目】已知,A、B在数轴上对应的数分别用、表示,且.
(1)数轴上点A表示的数是 ,点B表示的数是
(2)若一动点P从点A出发,以3个单位长度/秒速度由A向B运动;动点Q从原点O出发,以1个单位长度/秒速度向B运动,点P、Q同时出发,点Q运动到B点时两点同时停止.设点Q运动时间为t秒.
①若P从A到B运动,则P点表示的数为 ,Q点表示的数为 .用含的式子表示)
②当t为何值时,点P与点Q之间的距离为2个单位长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】基本模型:如图1,点A,F,B在同一直线上,若∠A=∠B=∠EFC=90°,易得△AFE~△BCF.
(1)模型拓展:如图2,点A,F,B在同一直线上,若∠A=∠B=∠EFC,求证:△AFE~△BCF;
(2)拓展应用:如图3,AB是半圆⊙O的直径,弦长AC=BC=4 ,E,F分别是AC,AB上的一点,若∠CFE=45°,若设AE=y,BF=x,求y与x的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,过y轴上一点P(0,1)作平行于x轴的直线PB,分别交函数y1=x2(x≥0)与y2= (x≥0)的图象于A1 , B1两点,过点B1作y轴的平行线交y1的图象于点A2 , 再过A2作直线A2B2∥x轴,交y2的图象于点B2 , 依次进行下去,连接A1A2 , B1B2 , A2A3 , B2B3 , …,记△A2A1B1的面积为S1 , △A2B1B2的面积为S2 , △A3A2B2的面积为S3 , △A3B2B3的面积为S4 , …则S2016=
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】请根据图中提供的信息,回答下列问题
(1)一个暖瓶与一个水杯分别是多少元?
(2)甲、乙两家商场同时出售同样的暖瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定: 这两种商品都打九折;乙商场规定:买一个暖瓶赠送一个水杯。若某单位想要买4个暖瓶和15个水杯,请问选择哪家商场购买更合算,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】目前,某市正积极推进“五城联创”,其中扩充改造绿地是推进工作计划之一.现有一块直角三角形绿地,量得两直角边长分别为a=9m和b=12m,现要将此绿地扩充改造为等腰三角形,且扩充部分包含以b=12m为直角边的直角三角形,则扩充后等腰三角形的周长为___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系中,直线y=2x+m与y轴交于点A,与直线y=-x+5交于点B(4,n),P为直线y=-x+5上一点.
(1)求m,n的值;
(2)求线段AP的最小值,并求此时点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,O是坐标原点,矩OABC的位置如图所示,点A,C的坐标分别为(10,0),(0,8),点P是y轴上的一个动点,将△OAP沿AP翻折得到:△O′AP,直线BC与直线O′P交于点E,与直线O′A交于点F.
(1)当O′落在直线BC上时,求折痕AP的长.
(2)当点P在y轴正半轴上时,若△PCE与△POA相似,求直线AP的解析式;
(3)在点P的运动过程中,是否存在某一时刻,使得 ?若存在,求点P坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,已知△ABC的三个顶点的坐标分别为A(﹣2,3),B(﹣6,0),C(﹣1,0).
(1)请直接写出点B关于点A对称的点的坐标;
(2)将△ABC绕坐标原点O逆时针旋转90°,画出图形,直接写出点B的对应点的坐标;
(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com