精英家教网 > 初中数学 > 题目详情

【题目】如图,在⊙O中,弦AB垂直平分半径OC,垂足为D.若点P是⊙O上异于点AB的任意一点,则∠APB=

A.30°60°B.60°150°C.30°150°D.60°120°

【答案】D

【解析】

利用垂径定理及已知可得到∠OAD=30°,再求出∠AOB的度数,再分情况讨论:当点P在优弧AB上时,利用圆周角定理就可取出∠P的度数;当点P在劣弧上时,利用圆内接四边形的对角互补,就可求出∠AP1B的度数.

连接OAOB

AB垂直平分半径OC

∴OD=OA

∴∠OAD=30°

∵OA=OB

∴∠OAB=∠OBA=30°

∴∠AOB=180°-∠OAB-∠OBA=180°-30°-30°=120°

当点P在优弧AB上时

∠APB=∠AOB=×120°=60°

当点P在劣弧上时,

∠APB+∠AP1B=180°

∴∠AP1B=180°-60°=120°

∴∠APB=120°60°

故答案为:D

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】我国古代数学家赵爽利用弦图证明了勾股定理,这是著名的赵爽弦图(如图1).它是由四个全等的直角三角形拼成了内、外都是正方形的美丽图案.在弦图中(如图2),已知点O为正方形ABCD的对角线BD的中点,对角线BD分别交AHCF于点PQ.在正方形EFGHEHFG两边上分别取点MN,且MN经过点O,若MH3MEBD2MN4 .则△APD的面积为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形中,,点分别在边上,,连接.动点上从点向终点匀速运动,同时,动点在射线.上从点沿方向匀速运动,当点运动到EF的中点时,点恰好与点重合,点到达终点时, 同时停止运动.

1)求的长.

2)设,求关于的函数表达式,并写出自变的取值范围.

3)连接,当的一边平行时,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在⊿中,以为直径的⊙与边交于点,点为⊙上一点,连接并延长交于点 ,连接

(1)若 ;求证:是⊙的切线;

(2)若 .求⊙的直径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:点MN分别是xy轴上的动点,点PQ是某个函数图象上的点,当四边形MNPQ为正方形时,称这个正方形为此函数的“梦幻正方形”例如:如图1所示,正方形MNPQ是一次函数y=﹣x+2的其中一个“梦幻正方形”.

1)若某函数是yx+5,求它的图象的所有“梦幻正方形”的边长;

2)若某函数是反比例函数yk0)(如图2所示),它的图象的“梦幻正方形”ABCDD(﹣4m)(m4)在反比例函数图象上,求m的值及反比例函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O的半径为5,ABC是⊙O的内接三角形,AB=8.AD和过点B的切线互相垂直,垂足为D

(1)求证:∠BAD+C=90°;

(2)求线段AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,的三个顶点坐标分别为

1)点关于坐标原点对称的点的坐标为______

2)将绕着点顺时针旋转,画出旋转后得到的

3)在(2)中,求边所扫过区域的面积是多少?(结果保留).

4)若三点的横坐标都加3,纵坐标不变,图形的位置发生怎样的变化?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着人们生活水平的提高,短途旅行日趋火爆.我市某旅行社推出辽阳葫芦岛海滨观光一日游项目,团队人均报名费用y(元)与团队报名人数x(人)之间的函数关系如图所示,旅行社规定团队人均报名费用不能低于88.旅行社收到的团队总报名费用为w(元).

(1)直接写出当x≥20时,yx之间的函数关系式及自变量x的取值范围;

(2)儿童节当天旅行社收到某个团队的总报名费为3000元,报名旅游的人数是多少?

(3)当一个团队有多少人报名时,旅行社收到的总报名费最多?最多总报名费是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将一段抛物线向右依次平移3个单位,得到第234段抛物线,设这四段抛物线分别为,若直线与第四段抛物线有唯一公共点,则的取值范围是( 

A.B.C.D.

查看答案和解析>>

同步练习册答案