精英家教网 > 初中数学 > 题目详情

【题目】我国古代数学家赵爽利用弦图证明了勾股定理,这是著名的赵爽弦图(如图1).它是由四个全等的直角三角形拼成了内、外都是正方形的美丽图案.在弦图中(如图2),已知点O为正方形ABCD的对角线BD的中点,对角线BD分别交AHCF于点PQ.在正方形EFGHEHFG两边上分别取点MN,且MN经过点O,若MH3MEBD2MN4 .则△APD的面积为_____

【答案】5

【解析】

连接FH,作EKMNOLDG,通过正方形的性质和全等三角形的性质以及勾股定理可求EM1,可得EH4,由勾股定理可求HD2AH6,由平行线的性质可得PH1,即可求解.

如图,连接FH,作EKMNOLDG

∵四边形ABCD是正方形,且BD2MN4

MN2AB2

∵四边形EFGH是正方形

FOHOEHFG

∴∠HMO=∠FNO,∠MHO=∠NFO,且FOHO

∴△MHO≌△FNOAAS

MHFN

MH3ME

MHFN3EMEHEF4EM

EKKNEHFG

∴四边形EMNK是平行四边形

MNEK2KNEM

FK2EM

EF2+FK2EK2

16EM2+4EM220

EM1

EH4

AD2=(AE+42+DH2,且AEDH

DHAE2

AH6

PHOL

PH1

AP5

SAPD×5×25

故答案为:5.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在正方形中,是对角线的交点,边上的动点(点不与重合),过点垂直于点,连结.下列四个结论:①;②;③;④若,则的最小值是1.其中正确结论是(

A.①②③B.①③④C.①②④D.②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在正方形ABCD中,对角线BD所在的直线上有两点E、F满足BE=DF,连接AE、AF、CE、CF,如图所示

(1)求证:△ABE≌△ADF;

(2)试判断四边形AECF的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,BC4,⊙P与△ABC的边或边的延长线相切.若⊙P半径为2,△ABC的面积为5,则△ABC的周长为( )

A.8B.10C.13D.14

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,矩形OABC的顶点AC分别在xy轴的正半轴上,顶点B的坐标为(42)点M是边BC上的一个动点(不与BC重合),反比例函数k0x0)的图象经过点M且与边AB交于点N,连接MN

(1)当点M是边BC的中点时,求反比例函数的表达式;

(2)在点M的运动过程中,试证明:是一个定值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】温州茶山杨梅名扬中国,某公司经营茶山杨梅业务,以3万元/吨的价格买入杨梅,包装后直接销售,包装成本为1万元/吨,它的平均销售价格y(单位:万元/吨)与销售数量x2x10,单位:吨)之间的函数关系如图所示.

1)若杨梅的销售量为6吨时,它的平均销售价格是每吨多少万元?

2)当销售数量为多少时,该经营这批杨梅所获得的毛利润(w)最大?最大毛利润为多少万元?(毛利润=销售总收入﹣进价总成本﹣包装总费用)

3)经过市场调查发现,杨梅深加工后不包装直接销售,平均销售价格为12万元/吨.深加工费用y(单位:万元)与加工数量x(单位:吨)之间的函数关系是yx+32x10).

当该公司买入杨梅多少吨时,采用深加工方式与直接包装销售获得毛利润一样?

该公司买入杨梅吨数在   范围时,采用深加工方式比直接包装销售获得毛利润大些?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1是一种纸巾盒,由盒身和圆弧盖组成,通过圆弧盖的旋转来开关纸巾盒.如图2是其侧面简化示意图,已知矩形的长,宽,圆弧盖板侧面所在圆的圆心是矩形的中心,绕点旋转开关(所有结果保留小数点后一位).

   

1)求所在的半径长及所对的圆心角度数;

2)如图3,当圆弧盖板侧面从起始位置绕点旋转时,求在这个旋转过程中扫过的的面积.

参考数据:3.14

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点O为∠ABC的边上的一点,过点OOMAB于点,到点的距离等于线段OM的长的所有点组成图形.图形W与射线交于EF两点(点在点F的左侧).

1)过点于点,如果BE=2,求MH的长;

2)将射线BC绕点B顺时针旋转得到射线BD,使得∠,判断射线BD与图形公共点的个数,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在⊙O中,弦AB垂直平分半径OC,垂足为D.若点P是⊙O上异于点AB的任意一点,则∠APB=

A.30°60°B.60°150°C.30°150°D.60°120°

查看答案和解析>>

同步练习册答案