分析 (1)由和谐四边形的定义,即可得到菱形是和谐四边形;
(2)和谐四边形不一定是轴对称图形,举出反例即可;
(3)首先根据题意画出图形,然后由AC是四边形ABCD的和谐线,可以得出△ACD是等腰三角形,从图1,图2,图3三种情况运用等边三角形的性质,正方形的性质和30°的直角三角形性质,即可求出∠ABC的度数.
解答 解:(1)∵菱形的四条边相等,
∴连接对角线能得到两个等腰三角形,
∴菱形是和谐四边形;
故选C;
(2)和谐四边形不一定是轴对称图形,如图所示:![]()
∠C=45°,直角梯形ABCD是和谐四边形,但不是轴对称图形,
故答案为:假;
(3)∵AC是四边形ABCD的和谐线,且AB=BC,
∴△ACD是等腰三角形,
∵在等腰Rt△ABD中,AB=AD,
∴AB=AD=BC,
①如图1,当AD=AC时,
∴AB=AC=BC,∠ACD=∠ADC
∴△ABC是正三角形,![]()
∴∠ABC=60°;
②如图2,当DA=DC时,
∴AB=AD=BC=CD.
∵∠BAD=90°,
∴四边形ABCD是正方形,
∴∠ABC=90°;
③如图3,当CA=CD时,过点C作CE⊥AD于E,过点B作BF⊥CE于F,![]()
∵AC=CD,CE⊥AD,
∴AE=ED,∠ACE=∠DCE.
∵∠BAD=∠AEF=∠BFE=90°,
∴四边形ABFE是矩形,
∴BF=AE.
∵AB=AD=BC,
∴BF=$\frac{1}{2}$BC,![]()
∴∠BCF=30°.
∵AB=BC,
∴∠ACB=∠BAC.
∵AB∥CE,
∴∠BAC=∠ACE,
∴∠ACB=∠BAC=$\frac{1}{2}$∠BCF=15°,
∴∠ABC=150°.
点评 此题主要考查了等腰直角三角形的性质,等腰三角形的性质、矩形的性质、正方形的性质以及菱形的性质,此题难度较大,解题的关键是掌握数形结合思想与分类讨论思想的应用.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com