精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC中,∠A20°,沿BE将此三角形对折,又沿BA′再一次对折,点C落在BE上的C′处,此时∠C′DB74°,则原三角形的∠C的度数为(

A.27°B.59°C.69°D.79°

【答案】D

【解析】

由折叠的性质得∠1=∠2,∠2=∠3,∠CDB=∠C′DB74°,则∠1=∠2=∠3,即∠ABC33,由三角形内角和定理得∠3+∠C106°,在ABC中,由三角形内角和定理得∠A+∠ABC+∠C180°,得出∠327°,即可得出结果.

解:如图所示:

∵△ABC沿BE将此三角形对折,又沿BA′再一次对折,点C落在BE上的C′处,
∴∠1=∠2,∠2=∠3,∠CDB=∠C′DB74°
∴∠1=∠2=∠3
∴∠ABC33
BCD中,∠3+∠C+∠CDB180°
∴∠3+∠C180°74°106°
ABC中,
∵∠A+∠ABC+∠C180°
20°23106°180°
∴∠327°
∴∠C106°-379°
故选:D

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点O为原点,点A的坐标为(﹣6,0).如图1,正方形OBCD的顶点B在x轴的负半轴上,点C在第二象限.现将正方形OBCD绕点O顺时针旋转角α得到正方形OEFG.

(1)如图2,若α=60°,OE=OA,求直线EF的函数表达式.

(2)若α为锐角,tanα= ,当AE取得最小值时,求正方形OEFG的面积.
(3)当正方形OEFG的顶点F落在y轴上时,直线AE与直线FG相交于点P,△OEP的其中两边之比能否为 :1?若能,求点P的坐标;若不能,试说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,,点是直线上一个动点(不与重合),点边上一个定点, 过点,交直线于点,连接,过点,交直线于点

如图,当点在线段上时,求证:

的条件下,判断这三个角的度数和是否为一个定值? 如果是,求出这个值,如果不是,说明理由.

如图,当点在线段 的延长线上时,(2)中的结论是否仍然成立?如果不成立, 请直接写出之间的关系.

)当点在线段的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直接 写出之间的关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知BD垂直平分AC∠BCD=∠ADFAF⊥AC

1)证明ABDF是平行四边形;

2)若AF=DF=5AD=6,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB,CD相交于点O,OA平分EOC

(1)若EOC=70°,求BOD的度数;

(2)若EOCEOD=2:3,求BOD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,点E,F分别在边CD,BC上,且∠EAF=45°,BD分别交AE,AF于点M,N,以点A为圆心,AB长为半径画弧BD.下列结论:①DE+BF=EF;②BN2+DM2=MN2;③△AMN∽△AFE;④ 与EF相切;⑤EF∥MN.其中正确结论的个数是( )

A.5个
B.4个
C.3个
D.2个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本题8分)已知:如图,ABC中,DAB的中点,EAC上一点,EFABDFBE

(1)猜想:DFAE的关系是______.

(2)试说明你猜想的正确性.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=a(x﹣m)2﹣a(x﹣m)(a,m为常数,且a≠0).
(1)求证:不论a与m为何值,该函数的图象与x轴总有两个公共点;
(2)设该函数的图象与x轴的两个交点为A(x1 , 0),B(x2 , 0),且x12+x22=25,求m的值;
(3)设该函数的图象的顶点为C,与x轴交于A,B两点,且△ABC的面积为1,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,用长为 的铝合金条制成“日”字形窗框,若窗框的宽为 ,窗户的透光面积为 (铝合金条的宽度不计).

(Ⅰ)求出 的函数关系式;
(Ⅱ)如何安排窗框的长和宽,才能使得窗户的透光面积最大?并求出此时的最大面积.

查看答案和解析>>

同步练习册答案