精英家教网 > 初中数学 > 题目详情

【题目】如图:AB是⊙O的直径,CG是⊙O上两点,且点C是劣弧AG的中点,过点C的直线CDBG的延长线于点D,交BA的延长线于点E,连接BC,交OD于点F

1)求证:CD是⊙O的切线;

2)若EDDB,求证:3OF2DF

3)在(2)的条件下,连接AD,若CD3,求AD的长.

【答案】1)见解析;(2)见解析(3

【解析】

1)如图1,连接,由圆周角定理得到,根据同圆的半径相等得到,于是得到,等量代换得到,根据平行线的判定得到,即可得到结论;

2)如图1,根据三角函数的定义得到,求得,得到,根据相似三角形的判定和性质定理即可得到结论;

3)如图2,过,解直角三角形即可得到结论.

解:(1)证明:如图1,连接OCACCG

∵ACCG

∴∠ABC∠CBG

∵OCOB

∴∠OCB∠OBC

∴∠OCB∠CBG

∴OC∥BG

∵CD⊥BG

∴OC⊥CD

∴CD⊙O的切线;

2)解:如图1

∵CD⊥BG

∴∠BDE90°

∴∠E30°

∴∠EBD∠COE60°

∴OCOAAE

∵OC∥BD

∴△EOC∽△EBD

∵OC∥BD

∴△COF∽△BDF

∴3OF2DF

3)解:如图2,过AAH⊥DEH

∵∠E30°

∴∠EBD60°

∵CD3

∴EH3

∴DH936

中,

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,等腰上一点,以为斜边作等腰,连接,若,则的长为________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,若OBC边的中点,则必有:AB2+AC2=2AO2+2BO2成立.依据以上结论,解决如下问题:如图,在矩形DEFG中,已知DE=4,EF=3,点P在以DE为直径的半圆上运动,则PF2+PG2的最小值为(  )

A. B. C. 34 D. 10

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本题满分8分)如图,⊙O的直径AC与弦BD相交于点F,点EDB延长线上一点,

EAB=ADB.

(1)求证:EA是⊙O的切线;

(2)已知点BEF的中点,求证:以ABC为顶点的三角形与AEF相似;

(3)在(2)的条件下,已知AF=4CF=2,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,D、E分别是斜边AB、直角边BC上的点,把沿着直线DE折叠.

如图1,当折叠后点B和点A重合时,用直尺和圆规作出直线DE;不写作法和证明,保留作图痕迹

如图2,当折叠后点B落在AC边上点P处,且四边形PEBD是菱形时,求折痕DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数yax2+bx+ca≠0)的图象如图所示,有下列结论:①abc0;②2a+b0;③若m为任意实数,则a+bam2+bm;④ab+c0;⑤若ax12+bx1ax22+bx2,且x1≠x2,则x1+x22.其中,正确结论的个数为(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系内,抛物线x轴交于点AC(点A在点C的左侧),与y轴交于点B,顶点为D.Q为线段BC的三等分点(靠近点C.

1)点M为抛物线对称轴上一点,点E为对称轴右侧抛物线上的点且位于第一象限,当的周长最小时,求面积的最大值;

2)在(1)的条件下,当的面积最大时,过点E轴,垂足为N,将线段CN绕点C顺时针旋转90°得到点N,再将点N向上平移个单位长度.得到点P,点G在抛物线的对称轴上,请问在平面直角坐标系内是否存在一点H,使点DPGH构成菱形.若存在,请直接写出点H的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数是常数,)图象的对称轴是直线,其图象的一部分如图所示,下列说法中①;②;③当时,;④;⑤.正确的结论有(

A.①②④B.②③④C.①③⑤D.①②③④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市为了缓解城市交通压力,决定修建人行天桥,原设计天桥的楼梯与地面的夹角为45°(∠ABC=45°),BC=4.2 m,后考虑安全因素,将楼梯角B移到CB的延长线上点D处,使∠ADC=23°(如图所示).求BD的长(精确到0.1 m).(参考数据:sin 67°≈0.92cos 67°≈0.39tan 67°≈2.36

查看答案和解析>>

同步练习册答案