精英家教网 > 初中数学 > 题目详情

【题目】已知函数y=mx2﹣(2m﹣5)x+m﹣2的图象与x轴有两个公共点.
(1)求m的取值范围,并写出当m取范围内最大整数时函数的解析式;
(2)题(1)中求得的函数记为C1
①当n≤x≤﹣1时,y的取值范围是1≤y≤﹣3n,求n的值;
②函数C2:y=m(x﹣h)2+k的图象由函数C1的图象平移得到,其顶点P落在以原点为圆心,半径为 的圆内或圆上,设函数C1的图象顶点为M,求点P与点M距离最大时函数C2的解析式.

【答案】
(1)

解:∵函数图象与x轴有两个交点,

∴m≠0且[﹣(2m﹣5)]2﹣4m(m﹣2)>0,

解得:m< 且m≠0.

∵m为符合条件的最大整数,

∴m=2.

∴函数的解析式为y=2x2+x.


(2)

解:①抛物线的对称轴为x=﹣ =﹣ .

∵n≤x≤﹣1<﹣ ,a=2>0,

∴当n≤x≤﹣1时,y随x的增大而减小.

∴当x=n时,y=﹣3n.

∴2n2+n=﹣3n,解得n=﹣2或n=0(舍去).

∴n的值为﹣2.

②∵y=2x2+x=2(x+ 2

∴M(﹣ ,﹣ ).

如图所示:

当点P在OM与⊙O的交点处时,PM有最大值.

设直线OM的解析式为y=kx,将点M的坐标代入得:﹣ k=﹣ ,解得:k= .

∴OM的解析式为y= x.

设点P的坐标为(x, x).

由两点间的距离公式可知:OP= =5,

解得:x=2或x=﹣2(舍去).

∴点P的坐标为(2,1).

∴当点P与点M距离最大时函数C2的解析式为y=2(x﹣2)2+1.


【解析】(1)函数图形与x轴有两个公共点,则该函数为二次函数且△>0,故此可得到关于m的不等式组,从而可求得m的取值范围;(2)先求得抛物线的对称轴,当n≤x≤﹣1时,函数图象位于对称轴的左侧,y随x的增大而减小,当当x=n时,y有最大值﹣3n,然后将x=n,y=﹣3n代入求解即可;(3)先求得点M的坐标,然后再求得当MP经过圆心时,PM有最大值,故此可求得点P的坐标,从而可得到函数C2的解析式.
【考点精析】利用二次函数的图象和二次函数的性质对题目进行判断即可得到答案,需要熟知二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点;增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】解方程组:

(1) (2)

(3) (4)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,已知点A(a,b),OA绕坐标原点O逆时针旋转90°OA',则点A'的坐标是_______ .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将Rt△ABC绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为 ,则图中阴影部分的面积是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在△ABC中,BD、CE分别是边AC、AB上的高,点MBC的中点,且MN⊥DE,垂足为点N

⑴求证:ME=MD;

⑵若BC=20cm,ED=12cm,求MN的长

⑶如果BD平分∠ABC,求证:AC=4EN.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在下列条件中,不能证明ABD≌△ACD的条件是(

A. B=C,BD=DC B. ADB=ADC,BD=DC

C. B=C,BAD=CAD D. BD=DC,AB=AC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABCD,现将一直角三角形PMN放入图中,其中∠P=90°,PMAB于点EPNCD于点F.

(1)当△PMN所放位置如图①所示时,求出∠PFD与∠AEM的数量关系;

(2)当△PMN所放位置如图②所示时,求证:∠PFD-∠AEM=90°;

(3)(2)的条件下,若MNCD交于点O,且∠DON=15°,∠PEB=30°,求∠N的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图所示,AC=CD,B=E=90°,ACCD,则不正确的结论是(  )

A. 1=2 B. A =2 C. ABC≌△CED D. A与∠D互为余角

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线 与x轴交于A、B两点(点A在点B的右侧),与y轴交于点C,有一宽度为1的刻度尺沿x轴方向平移,与y轴平行的一组对边交抛物线于点P和点Q,交直线AC于点M和点N,交x轴于点E和点F.

(1)求点A、B、C的坐标;
(2)当点M和点N都在线段AC上时,连接EN,如果点E的坐标为(4,0),求sin∠ANE的值;
(3)在刻度尺平移过程中,当以点P、Q、N、M为顶点的四边形是平行四边形时,求点N的坐标.

查看答案和解析>>

同步练习册答案