精英家教网 > 初中数学 > 题目详情

【题目】如图,等腰直角三角形ABC中,点D在斜边BC上,以AD为直角边作等腰直角三角形ADE

(1)求证:ABD≌△ACE

(2)求证:BD2CD22AD2

【答案】见解析

【解析】

(1)通过证BACAADAE,∠BAD=∠CAE得出ABD≌△ACE

(2)证CE=BD,DE2=2AD2,再在Rt△CDE中利用勾股定理即可.

:∵△ABC,△ADE是等腰直角三角形

∴∠BAC=∠DAE=90°,BACAADAE,∠B=∠ACB=∠ADE=∠AED=45°,

∴∠BAD+∠DAC =∠CAE+∠DAC

∴∠BAD=∠CAE

ABDACEBACA,∠BAD=∠CAEADAE

∴△ABD≌△ACE

(2)∵△ABD≌△ACE

∴∠ABD=∠ACE=45°,BD=CE.

∴∠ECD=∠ACE+∠ACB=90°,

CE2CD2DE2

∵△ADE是等腰直角三角形

DE2AD2AE2=2AD2

BD2CD2=2AD2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ABC是等边三角形,点DBC上,△ADE是等腰三角形,AD AE ,∠DAE 100°,当DEAC时,求∠BAD和∠EDC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,把手AM的仰角α=37°,此时把手端点A、出水口B和点落水点C在同一直线上,洗手盆及水龙头的相关数据如图2.(参考数据:sin37°=,cos37°=,tan37°=

求把手端点A到BD的距离;

求CH的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+bx+cx轴交于AB两点,与y轴交于点C,已知A﹣10),C03

1)求该抛物线的表达式;

2)求BC的解析式;

3)点M是对称轴右侧点B左侧的抛物线上一个动点,当点M运动到什么位置时,BCM的面积最大?求BCM面积的最大值及此时点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,根据要求回答下列问题:

(1)点A关于y轴对称点A′的坐标是  ;点B关于y轴对称点B′的坐标是  

(2)作出ABC关于y轴对称的图形A′B′C′(不要求写作法)

(3)求ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场准备进一批两种不同型号的衣服,已知购进A种型号衣服9件,B种型号衣服10件,则共需1810元;若购进A种型号衣服12件,B种型号衣服8件,共需1880元;已知销售一件A型号衣服可获利18元,销售一件B型号衣服可获利30元,要使在这次销售中获利不少于699元,且A型号衣服不多于28件.

(1)求A、B型号衣服进价各是多少元?

(2)若已知购进A型号衣服是B型号衣服的2倍还多4件,则商店在这次进货中可有几种方案并简述购货方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】选择适当的方法解下列方程:

(1);(2)

(3);(4).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在梯形ABCD中,ABCD,D=90°,AD=CD=2,点E在边AD上(不与点A、D重合),∠CEB=45°,EB与对角线AC相交于点F,设DE=x.

(1)用含x的代数式表示线段CF的长;

(2)如果把CAE的周长记作CCAEBAF的周长记作CBAF,设=y,求y关于x的函数关系式,并写出它的定义域;

(3)当∠ABE的正切值是时,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】【问题情境】

课外兴趣小组活动时,老师提出了如下问题:

如图①ABC中,若AB=12,AC=8,求BC边上的中线AD的取值范围.

小明在组内经过合作交流,得到了如下的解决方法:延长AD至点E,使DEAD,连接BE.请根据小明的方法思考:

(1)由已知和作图能得到ADC≌△EDB,依据是

A.SSS B.SAS C.AAS D.HL

(2)由三角形的三边关系可求得AD的取值范围是

解后反思:题目中出现中点”、“中线等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集中到同一个三角形之中.

【初步运用】

如图②ADABC的中线,BEACE,交ADF,且AEEF.若EF=3,EC=2,求线段BF的长.

【灵活运用】

如图③,在ABC中, A=90°,DBC中点, DEDFDEAB于点EDFAC于点F,连接EF.试猜想线段BE、CF、EF三者之间的等量关系,并证明你的结论.

查看答案和解析>>

同步练习册答案