【题目】已知:AB是⊙O的直径,P是OA上一点,过点P作⊙O的非直径的弦CD.
(1)若PA=2,PB=10,∠CPB=30°,求CD长;
(2)求证:PCPD=PAPB;
(3)设⊙O的直径为8,若PC、PD是方程,求m的范围.
【答案】(1);(2)详见解析;(3)
【解析】
(1)连接OC,过点O作OE⊥CD于点E,先求出AB=12,可求OP=4,进而由直角三角形的性质可求OE的长,再由勾股定理可求EC的长,最后由垂径定理可求解;
(2)连接AD、CB,通过证明,可得,即可得结论;
(3)由一元二次方程的根与系数关系,可求m的范围.
(1)如下图,连接OC,过点O作OE⊥CD于点E
∵PA=2,PB=10
∴AB= 12
∴OA=OB=OC=6
∴OP=4
∵∠CPB=30°,OE⊥CD
∴CE=DE,PO=2OE
∴OE=2
∵EC=
∴CD=
(2)如下图:连接AD、CB
∵
∴∽
∴
∴
(3)∵PC、PD是方程的两根
∴
∴
∵CD是非直径的弦
∴
∴
∵PC、PD是方程的两根
∴
∴或
∴
科目:初中数学 来源: 题型:
【题目】参照学习函数的过程与方法,探究函数的图象与性质列表:
描点:在平面直角坐标系中,以自变量x的取值为横坐标,以相应的函数值为纵坐标,描出相应的点,如图所示:
(1)请补全函数图象:
(2)观察图象并分析表格,回答下列问题:
①当时,y随x的增大而_________;(填“增大”或“减小”)
②图象关于点__________中心对称.(填点的坐标)
③当时,的最小值是_________.
(3)结合函数图象,当时,求x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,E,F分别是边AD,BC的中点,AC分别交BE,DF于G,H,试判断下列结论:①△ABE≌△CDF;②AG=GH=HC;③2EG=BG;④S△ABG:S四边形GHDE=2:3,其中正确的结论是( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,抛物线L1:过点C(0,﹣3),与抛物线L2:的一个交点为A,且点A的横坐标为2,点P、Q分别是抛物线L1、抛物线L2上的动点.
(1)求抛物线L1对应的函数表达式;
(2)若以点A、C、P、Q为顶点的四边形恰为平行四边形,求出点P的坐标;
(3)设点R为抛物线L1上另一个动点,且CA平分∠PCR,若OQ∥PR,求出点Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们可以通过下列步骤估计方程x2﹣2x﹣2=0方程的根所在的范围.
第一步:画出函数y=x2﹣2x﹣2=0的图象,发现函数图象是一条连续不断的曲线,且与x轴的一个交点的横坐标在0,﹣1之间.
第二步:因为当x=0时,y=﹣2<0,当x=﹣1时,y=1>0,
所以可确定方程x2﹣2x﹣2=0的一个根x1所在的范围是﹣1<x1<0
第三步:通过取0和﹣1的平均数缩小x1所在的范围:
取x=,因为当x=对,y<0.又因为当x=﹣1时,y>0,所以
(1)请仿照第二步,通过运算验证方程x2﹣2x﹣2=0的另一个根x2所在的范围是2<x2<3
(2)在2<x2<3的基础上,重复应用第三步中取平均数的方法,将x2所在的范围缩小至a<x2<b,使得.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与实践:
问题情境:矩形旋转中的数学
已知在矩形中,,,以点为旋转中心,逆时针旋转矩形,旋转角为,得到矩形,点、点、点的对应点分别为点、点、点.
操作猜想:
(1)如图①,当点落在边上时,求线段的长度;
深入探究:
(2)如图②,当点落在线段上时,与相交于点,连接,求线段的长度;
(3)请从,两题中任选一题作答,我选______题.
题:如图③,设点为边的中点,连接,,,在矩形旋转过程中,的面积是否存在最大值?若存在请直接写出这个最大值;若不存在请说明理由.
题:如图④,设点为矩形对角线交点,连接,,在矩形旋转过程中,的面积是否存在最大值?若存在请直接写出这个最大值;若不存在请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某班“数学兴趣小组”对函数的图象与性质进行了探究,探究过程如下,请补充完整.
(1)函数的自变量的取值范围是_________.
(2)下表是与的几组对应值.
… | 0 | 2 | 3 | 4 | 5 | … | ||||||
… | … |
则表格中的__________.
(3)如图,在平面直角坐标系中,描出了以上表格中各组对应值为坐标的点,请根据描出的点,画出该函数的图象;试写出该函数的一条性质________________________________________________________.
(4)①当直线与函数的图象有唯一交点时,的值为___________;
②若直线与函数无交点,则的取值范围为_____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“每天锻炼一小时,健康生活一辈子”,为了选拔“阳光大课堂”领操员校组织初中三个年级推选出来的15名领操员进行比赛,成绩如下表:
成绩/分 | 7 | 8 | 9 | 10 |
人数/人 | 2 | 5 | 4 | 4 |
若任意选择一名领操员的可能性相同
(1)任意选取一名领操员,选到成绩最低领操员的概率是_________.
(2)已知获得10分的选手中,七、八、九年级分别有1人,2人,1人,学校准备从中随机选取两人领操,求恰好选到八年级两名领操员的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数的部分图象如图所示,其中图象与轴交于点,与轴交于点,且经过点.
求此二次函数的解析式;
将此二次函数的解析式写成的形式,并直接写出顶点坐标以及它与轴的另一个交点的坐标.
利用以上信息解答下列问题:若关于的一元二次方程(为实数)在的范围内有解,则的取值范围是________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com